Abducted by Bayesians?

Abstract This paper discusses the role of theoretical notions in making predictions and evaluating statistical models. The core idea of the paper is that such theoretical notions can be spelt out in terms of priors over statistical models, and that such priors can themselves be assigned probabilities. The discussion substantiates the claim that the use of theoretical notions may offer specific empirical advantages. Moreover, I argue that this use of theoretical notions explicates a particular kind of abductive inference. The paper thus contributes to the discussion over Bayesian models of abductive inference.

[1]  Igor Douven,et al.  Inference to the Best Explanation Made Coherent , 1999, Philosophy of Science.

[2]  S. Psillos Scientific Realism: How Science Tracks Truth , 1999 .

[3]  M. J. Osler Laws and symmetry , 1993 .

[4]  J. Romeyn Hypotheses and Inductive Predictions , 2004 .

[5]  S. Okasha Underdetermination, Holism and the Theory/Data Distinction , 2002 .

[6]  Jan-Willem Romeijn,et al.  Hypotheses and Inductive Predictions , 2004, Synthese.

[7]  Bayesianism v. scientific realism , 2003 .

[8]  B. D. Finetti,et al.  Foresight: Its Logical Laws, Its Subjective Sources , 1992 .

[9]  E. Jaynes Probability theory : the logic of science , 2003 .

[10]  Some estimates of the optimum inductive method , 1986 .

[11]  W. Salmon Explanation and Confirmation: A Bayesian Critique of Inference to the Best Explanation , 2001 .

[12]  Van Fraassen,et al.  Laws and symmetry , 1989 .

[13]  J. Charles Kerkering,et al.  Subjective and Objective Bayesian Statistics: Principles, Models, and Applications , 2003, Technometrics.

[14]  Igor Douven,et al.  Testing Inference To The Best Explanation , 2002, Synthese.

[15]  Jan-Willem Romeijn,et al.  Bayesian inductive logic , 2005 .

[16]  Roberto Festa,et al.  Optimum Inductive Methods , 1993 .

[17]  Malcolm R. Forster,et al.  Counterexamples to a likelihood theory of evidence , 2006, Minds and Machines.

[18]  Elliott Sober,et al.  Bayesianism: its scope and limits , 2002 .

[19]  C. D. Litton,et al.  Comparative Statistical Inference. , 1975 .

[20]  Rudolf Carnap,et al.  The continuum of inductive methods , 1952 .

[21]  S. Okasha Van Fraassen's critique of inference to the best explanation , 2000 .

[22]  Peter Lipton,et al.  Inference to the best explanation , 1993 .

[23]  P. Frank,et al.  Boston Studies in the Philosophy of Science , 1968 .

[24]  Peter Urbach,et al.  Scientific Reasoning: The Bayesian Approach , 1989 .

[25]  S. James Press,et al.  Subjective and Objective Bayesian Statistics , 2002 .

[26]  L. M. M.-T. Theory of Probability , 1929, Nature.

[27]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[28]  Timothy J. McGrew Confirmation, Heuristics, and Explanatory Reasoning , 2003, The British Journal for the Philosophy of Science.

[29]  V. Vieland,et al.  Statistical Evidence: A Likelihood Paradigm , 1998 .

[30]  Mark Tregear,et al.  Utilising Explanatory Factors in Induction? , 2004, The British Journal for the Philosophy of Science.

[31]  Jonathan Weisberg,et al.  Locating IBE in the Bayesian framework , 2009, Synthese.

[32]  J. Earman Underdetermination, Realism, and Reason , 1993 .

[33]  Haim Gaifman,et al.  A Theory of Higher Order Probabilities , 1986, TARK.

[34]  Irving John Good,et al.  The Estimation of Probabilities: An Essay on Modern Bayesian Methods , 1965 .

[35]  Joseph Hilbe,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .

[36]  Timothy Day,et al.  Putting inference to the best explanation in its place , 1994, Synthese.

[37]  G Gigerenzer,et al.  Reasoning the fast and frugal way: models of bounded rationality. , 1996, Psychological review.

[38]  Jon Williamson,et al.  Bayesianism and Language Change , 2002, J. Log. Lang. Inf..

[39]  J. Romeijn Analogical Predictions for Explicit Similarity , 2006 .

[40]  Brian Skyrms,et al.  Bayes or Bust , 2000 .

[41]  S. Psillos,et al.  The Routledge Companion to Philosophy of Science , 2008 .

[42]  Jaakko Hintikka,et al.  Unknown Probabilities, Bayesianism, and De Finetti’s Representation Theorem , 1970 .

[43]  H. Feigl,et al.  Minnesota studies in the philosophy of science , 1956 .

[44]  Joshua B. Tenenbaum,et al.  The Structure and Dynamics of Scientific Theories: A Hierarchical Bayesian Perspective* , 2010, Philosophy of Science.

[45]  P. Gustafson On Model Expansion, Model Contraction, Identifiability and Prior Information: Two Illustrative Scenarios Involving Mismeasured Variables , 2005 .