Uncertainty decomposition of quantum networks in SLH framework

This paper presents a systematic method to decompose uncertain linear quantum input-output networks into uncertain and nominal subnetworks, when uncertainties are defined in SLH representation. To this aim, two decomposition theorems are stated, which show how an uncertain quantum network can be decomposed into nominal and uncertain subnetworks in cascaded connection and how uncertainties can be translated from SLH parameters into state-space parameters. As a potential application of the proposed decomposition scheme, robust stability analysis of uncertain quantum networks is briefly introduced. The proposed uncertainty decomposition theorems take account of uncertainties in all three parameters of a quantum network and bridge the gap between SLH modeling and state-space robust analysis theory for linear quantum networks.

[1]  Constantin Brif,et al.  Silicon nanophotonics for scalable quantum coherent feedback networks , 2016, EPJ Quantum Technology.

[2]  Guofeng Zhang,et al.  LQG/H∞ control of linear quantum stochastic systems , 2015, 2015 34th Chinese Control Conference (CCC).

[3]  Alireza Khayatian,et al.  Expectational boundedness of stable LTI systems in the presence of nonvanishing stochastic perturbation , 2017, 2017 Iranian Conference on Electrical Engineering (ICEE).

[4]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[5]  Ian R. Petersen,et al.  Robust stability of uncertain quantum systems , 2012, 2012 American Control Conference (ACC).

[6]  V. Belavkin Towards the theory of control in observable quantum systems , 2004, quant-ph/0408003.

[7]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[8]  Ian R. Petersen,et al.  Finite horizon H∞ control for a class of sampled‐data linear quantum systems , 2017 .

[9]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[10]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[11]  Daoyi Dong,et al.  Robust H∞ controller design for a class of linear quantum systems with time delay , 2017 .

[12]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[13]  Felix Motzoi,et al.  Continuous joint measurement and entanglement of qubits in remote cavities , 2015, 1503.04766.

[14]  Kurt Jacobs,et al.  Input-output theory for superconducting and photonic circuits that contain weak retroreflections and other weak pseudocavities , 2018, Physical Review A.

[15]  Sophie Schirmer,et al.  Backaction driven, robust, steady-state long-distance qubit entanglement over lossy channels , 2015, 1512.03415.

[16]  N. Yamamoto Robust observer for uncertain linear quantum systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[17]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[18]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[19]  M. R. James,et al.  Squeezing Components in Linear Quantum Feedback Networks , 2009, 0906.4860.

[20]  V. P. Belavkin,et al.  Measurement, filtering and control in quantum open dynamical systems , 1999 .

[21]  Joseph Kerckhoff,et al.  The SLH framework for modeling quantum input-output networks , 2016, 1611.00375.

[22]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[23]  Ian R. Petersen,et al.  Coherent robust H∞ control of linear quantum systems with uncertainties in the Hamiltonian and coupling operators , 2017, Autom..

[24]  Alireza Khayatian,et al.  Robustly Stable Uncertain Linear Stochastic Quantum Systems: Definition and Analysis , 2016 .

[25]  Ian R. Petersen,et al.  Robust H∞ estimation of uncertain linear quantum systems , 2015, ArXiv.

[26]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[27]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[28]  M. James,et al.  Stability, gain, and robustness in quantum feedback networks (13 pages) , 2005, quant-ph/0511140.

[29]  Ian R. Petersen,et al.  Quantum Linear Systems Theory , 2016, ArXiv.

[30]  Thomas M Stace,et al.  Passive On-Chip Superconducting Circulator Using a Ring of Tunnel Junctions. , 2017, Physical review letters.

[31]  Hideo Mabuchi,et al.  Principles and applications of control in quantum systems , 2005 .