On Principal Components Regression, Random Projections, and Column Subsampling
暂无分享,去创建一个
[1] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[2] E.J. Candes,et al. An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.
[3] Shusen Wang,et al. Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging , 2017, ICML.
[4] Shiva Prasad Kasiviswanathan,et al. Compressed Sparse Linear Regression , 2017, ArXiv.
[5] M. Wegkamp,et al. Optimal selection of reduced rank estimators of high-dimensional matrices , 2010, 1004.2995.
[6] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[7] Martin Slawski. Compressed Least Squares Regression revisited , 2017, AISTATS.
[8] Thomas L. Marzetta,et al. A Random Matrix-Theoretic Approach to Handling Singular Covariance Estimates , 2011, IEEE Transactions on Information Theory.
[9] Rajen Dinesh Shah,et al. Min-wise hashing for large-scale regression and classication with sparse data , 2013 .
[10] M. Kendall. A course in multivariate analysis , 1958 .
[11] S. Ahmed,et al. Big and Complex Data Analysis , 2017 .
[12] Rachel Ward,et al. New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..
[13] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[14] Martin J. Wainwright,et al. Randomized Sketches of Convex Programs With Sharp Guarantees , 2015, IEEE Trans. Inf. Theory.
[15] R. DeVore,et al. A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .
[16] I. Jolliffe. A Note on the Use of Principal Components in Regression , 1982 .
[17] Nir Ailon,et al. An almost optimal unrestricted fast Johnson-Lindenstrauss transform , 2010, SODA '11.
[18] Gesellschaft für Klassifikation. Jahrestagung,et al. Data Analysis, Machine Learning and Knowledge Discovery - Proceedings of the 36th Annual Conference of the Gesellschaft für Klassifikation e. V., Hildesheim, Germany, August 2012 , 2014, GfKl.
[19] J. Matousek,et al. On variants of the Johnson–Lindenstrauss lemma , 2008 .
[20] Sham M. Kakade,et al. A tail inequality for quadratic forms of subgaussian random vectors , 2011, ArXiv.
[21] Ata Kabán. New Bounds on Compressive Linear Least Squares Regression , 2014, AISTATS.
[22] P. Richetti,et al. Isotropic Huygens dipoles and multipoles with colloidal particles , 2017, 1707.08902.
[23] Rémi Munos,et al. Compressed Least-Squares Regression , 2009, NIPS.
[24] Joel A. Tropp,et al. Improved Analysis of the subsampled Randomized Hadamard Transform , 2010, Adv. Data Sci. Adapt. Anal..
[25] Piotr Indyk,et al. Nearest-neighbor-preserving embeddings , 2007, TALG.
[26] H. Hotelling. Analysis of a complex of statistical variables into principal components. , 1933 .
[27] Bing Li,et al. ON PRINCIPAL COMPONENTS AND REGRESSION: A STATISTICAL EXPLANATION OF A NATURAL PHENOMENON , 2009 .
[28] Santosh S. Vempala,et al. The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
[29] Michael W. Mahoney,et al. A Statistical Perspective on Randomized Sketching for Ordinary Least-Squares , 2014, J. Mach. Learn. Res..
[30] Dean P. Foster,et al. Fast Ridge Regression with Randomized Principal Component Analysis and Gradient Descent , 2014, UAI.
[31] William J. Astle,et al. Statistical properties of sketching algorithms , 2017, Biometrika.
[32] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[33] A. James. Normal Multivariate Analysis and the Orthogonal Group , 1954 .
[34] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .