Using virtual reality and percolation theory to visualize fluid flow in porous media

The study of the fluid flow process through porous media can bring valuable contributions in areas like oil exploration and environmental research. In this work, we propose an interactive tool, named VRFluid, that allows visual interpretation of the three-dimensional data generated by the simulation of the fluid flow the porous media. VRFluid comprises a virtual reality engine that provides stereo visualization of the three-dimensional data, and a simulation engine based on a dynamic percolation method to model the fluid flow. VRFluid is composed of two independent main threads, the percolation simulator and the rendering server, that can operate in parallel as a pipeline. We tested our tool on a region of a mature field database, supervised by geophysicists, and obtained images of the interior of the percolation data, providing important results for the interpretation and cluster formation process.

[1]  Ulrich Lang,et al.  Volume Rendering in a Virtual Environment , 2001, EGVE/IPT.

[2]  Donna J. Cox,et al.  TELE-IMMERSIVE VIRTUAL ENVIRONMENTS FOR COLLABORATIVE KNOWLEDGE DISCOVERY , 1999 .

[3]  Dave Shreiner OpenGL Reference Manual: The Official Reference Document to OpenGL, Version 1.2 , 1999 .

[4]  A. Kovscek,et al.  Visualization of Solution Gas Drive in Viscous Oil, SUPRI TR-126 , 2001 .

[5]  Patrick J. Moran,et al.  Crumbs: a virtual environment tracking tool for biological imaging , 1995, Proceedings 1995 Biomedical Visualization.

[6]  Cristiana Bentes,et al.  VisFluid: An Analysis Tool for Fluid Flow in Porous Media , 2005, GEOINFO.

[7]  Ugur Güdükbay,et al.  Stereoscopic View-Dependent Visualization of Terrain Height Fields , 2002, IEEE Trans. Vis. Comput. Graph..

[8]  Brian Berkowitz,et al.  Percolation Theory and Network Modeling Applications in Soil Physics , 1998 .

[9]  Lukas Mroz,et al.  RTVR-a flexible Java library for interactive volume rendering , 2001, Proceedings Visualization, 2001. VIS '01..

[10]  Markus Hilpert,et al.  Pore-morphology-based simulation of drainage in totally wetting porous media , 2001 .

[11]  Ioannis Chatzis,et al.  The modeling of mercury porosimetry and the relative permeability of mercury in sandstones using percolation theory , 1985 .

[12]  Geoffrey A. Dorn,et al.  Visualization in 3-D seismic interpretation , 1995 .

[13]  G. R. Jerauld,et al.  The effect of pore-structure on hysteresis in relative permeability and capillary pressure: Pore-level modeling , 1990 .

[14]  Shiaofen Fang,et al.  3DIVE: An immersive environment for interactive volume data exploration , 2008, Journal of Computer Science and Technology.

[15]  R. Hudson,et al.  Networked virtual reality for real-time 4D navigation of astrophysical turbulence data , 1996 .

[16]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[17]  Ricardo Farias,et al.  ZSWEEP: An Efficient and Exact Projection Algorithm for Unstructured Volume Rendering , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[18]  Geoffrey A. Dorn,et al.  Immersive 3-D visualization applied to drilling planning , 2001 .

[19]  Hydraulic conductivity of partially saturated fractured porous media: Flow in a cross-section , 2003 .

[20]  David Wilkinson,et al.  Invasion percolation: a new form of percolation theory , 1983 .

[21]  Marcel G. Schaap,et al.  Percolation Theory for Flow in Porous Media , 2006 .

[22]  Hanspeter Pfister,et al.  The VolumePro real-time ray-casting system , 1999, SIGGRAPH.

[23]  William L. Hibbard,et al.  The VIS-5D system for easy interactive visualization , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[24]  P. Peggy Li,et al.  ParVox: a parallel splatting volume rendering system for distributed visualization , 1997, PRS '97.

[25]  D. Stauffer Scaling Theory of Percolation Clusters , 1979, Complex Media and Percolation Theory.

[26]  Joan Adler,et al.  Bootstrap Percolation: visualizations and applications , 2003 .

[27]  Stanimire Tomov,et al.  Benchmarking and implementation of probability-based simulations on programmable graphics cards , 2003, Comput. Graph..

[28]  Larry F. Hodges Basic principles of stereographic software development , 1991, Electronic Imaging.

[29]  Mathew Maltrud,et al.  POPTEX: Interactive ocean model visualization using texture mapping hardware , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[30]  H. Stanley,et al.  Predicting oil recovery using percolation , 1999 .

[31]  Cass T. Miller,et al.  Pore‐Scale Modeling of Nonwetting‐Phase Residual in Porous Media , 1995 .

[32]  L. Castanier,et al.  Oil-foam interactions in a micromodel , 1997 .

[33]  Larry F. Hodges,et al.  Tutorial: time-multiplexed stereoscopic computer graphics , 1992, IEEE Computer Graphics and Applications.

[34]  M. Celia,et al.  The effect of heterogeneity on the drainage capillary pressure‐saturation relation , 1992 .

[35]  S. Friedman,et al.  Critical path analysis of the relationship between permeability and electrical conductivity of three‐dimensional pore networks , 1998 .

[36]  Cláudio T. Silva,et al.  VolVis: a diversified volume visualization system , 1994, Proceedings Visualization '94.