Clifford Algebras and Spinor Operators

This paper begins with a historical survey on Clifford algebras and a model on how to start an undergraduate course on Clifford algebras. The Dirac equation and the bilinear covariants are discussed. The Fierz identities are sufficient to reconstruct a Dirac spinor from its bilinear covariants, up to a phase. However, the Weyl and Majorana spinors cannot be reconstructed using the Fierz identities alone. This paper introduces a new concept, the boomerang, for the reconstruction of the Weyl and Majorana spinors. This method reveals a new class of spinors residing in between the Weyl, Majorana and Dirac spinors, namely the flag-dipole spinors.

[1]  Clifford,et al.  Applications of Grassmann's Extensive Algebra , 1878 .

[2]  E. Folke Bolinder,et al.  Clifford Numbers and Spinors , 1993 .

[3]  J. Crawford On the algebra of Dirac bispinor densities: Factorization and inversion theorems , 1985 .

[4]  C. Chevalley Theory of Lie Groups , 1946 .

[5]  P. Holland Minimal Ideals and Clifford Algebras in the Phase Space Representation of Spin-1/2 Fields , 1986 .

[6]  Dirac Equation for Bispinor Densities , 1986 .

[7]  J. Keller,et al.  The multivector structure of the matter and interaction field theories , 1992 .

[8]  David Hestenes,et al.  Space-time algebra , 1966 .

[9]  F. Gürsey Relation of charge independence and baryon conservation to Pauli’s transformation , 1958 .

[10]  E. Stiefel,et al.  Perturbation theory of Kepler motion based on spinor regularization. , 1965 .

[11]  A. Crumeyrolle Orthogonal and Symplectic Clifford Algebras: Spinor Structures , 1990 .

[12]  Robin Tucker,et al.  An Introduction to Spinors and Geometry with Applications in Physics , 1988 .

[13]  F. Sauter Lösung der Diracschen Gleichungen ohne Spezialisierung der Diracschen Operatoren , 1930 .

[14]  C. Chevalley,et al.  The algebraic theory of spinors , 1954 .

[15]  M. Riesz Sur Certaines Notions Fondamentales en Théorie Quantique Relativiste , 1988 .

[16]  David Hestenes Proper dynamics of a rigid point particle , 1974 .

[17]  D. Hestenes REAL SPINOR FIELDS. , 1967 .

[18]  David Hestenes,et al.  Clifford Algebra and the Interpretation of Quantum Mechanics , 1986 .

[19]  Yasushi Takahashi The Fierz identities—A passage between spinors and tensors , 1983 .

[20]  S. Rodríguez-Romo,et al.  A multivectorial Dirac equation , 1990 .

[21]  G. Juvet Opérateurs de Dirac et équations de Maxwell , 1930 .

[22]  E. Witt,et al.  Theorie der quadratischen Formen in beliebigen Körpern. , 1937 .

[23]  Bernard Jancewicz,et al.  Multivectors And Clifford Algebra In Electrodynamics , 1989 .

[24]  R. Penrose,et al.  Spinors and Space–Time: Subject and author index , 1984 .

[25]  H. Weyl,et al.  Spinors in n Dimensions , 1935 .

[26]  J. Hamilton The Dirac equation and Hestenes’ geometric algebra , 1984 .

[27]  K. Th. Vahlen,et al.  Ueber Bewegungen und complexe Zahlen , 1902 .

[28]  Sidney D. Drell,et al.  Relativistic Quantum Mechanics , 1965 .

[29]  A. Crumeyrolle,et al.  Orthogonal and Symplectic Cli ord Algebras , 1990 .

[30]  F. Reese Harvey,et al.  Spinors and Calibrations , 1990 .

[31]  D. Hestenes Local observables in the Dirac theory , 1973 .

[32]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus , 1984 .

[33]  Pertti Lounesto,et al.  Scalar products of spinors and an extension of Brauer-Wall groups , 1981 .

[34]  P. Holland Relativistic algebraic spinors and quantum motions in phase space , 1986 .