Higher Sobolev Regularity of Convex Integration Solutions in Elasticity: The Dirichlet Problem with Affine Data in int(K^lc)

In this article we continue our study of higher Sobolev regularity of flexible convex integration solutions to differential inclusions arising from applications in materials sciences. We present a general framework yielding higher Sobolev regularity for Dirichlet problems with affine data in $\text{int}(K^{lc})$. This allows us to simultaneously deal with linear and nonlinear differential inclusion problems. We show that the derived higher integrability and differentiability exponent has a lower bound, which is independent of the position of the Dirichlet boundary data in $\text{int}(K^{lc})$. As applications we discuss the regularity of weak isometric immersions in two and three dimensions as well as the differential inclusion problem for the geometrically linear hexagonal-to-rhombic and the cubic-to-orthorhombic phase transformations occurring in shape memory alloys.

[1]  Vladimir Sverak,et al.  Convex integration with constraints and applications to phase transitions and partial differential equations , 1999 .

[2]  Peter Takáč,et al.  The Maz’ya Anniversary Collection , 1999 .

[3]  R. Jerrard,et al.  On multiwell Liouville theorems in higher dimension , 2008, 0802.0850.

[4]  Haimin Yao,et al.  Journal of the Mechanics and Physics of Solids , 2014 .

[5]  Sergio Conti,et al.  Quasiconvex functions incorporating volumetric constraints are rank-one convex , 2008 .

[6]  R. Toupin ELASTIC MATERIALS WITH COUPLE STRESSES, ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS , 1962 .

[7]  On the n-dimensional Dirichlet problem for isometric maps , 2008 .

[8]  X. Ren,et al.  Mathematics , 1935, Nature.

[9]  S. Müller,et al.  Microstructures with finite surface energy: the two-well problem , 1995 .

[10]  F. Otto,et al.  A rigidity result for a perturbation of the geometrically linear three‐well problem , 2009 .

[11]  L. Székelyhidi From Isometric Embeddings to Turbulence , 2010 .

[12]  J. Stiegler Materials Science and Engineering at ORNL , 1987 .

[13]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[14]  Kenneth Falconer,et al.  GEOMETRY OF SETS AND MEASURES IN EUCLIDEAN SPACES FRACTALS AND RECTIFIABILITY , 1996 .

[15]  Florian Theil,et al.  Single-Slip Elastoplastic Microstructures , 2005 .

[16]  K. Bhattacharya Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect , 2003 .

[17]  Angkana Rüland,et al.  Higher Sobolev Regularity of Convex Integration Solutions in Elasticity: The Planar Geometrically Linearized Hexagonal-to-Rhombic Phase Transformation , 2016, Journal of Elasticity.

[18]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[19]  Petru Mironescu,et al.  Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces , 2001 .

[20]  B. Kirchheim Lipschitz minimizers of the 3-well problem having gradients of bounded variation , 1998 .

[21]  Angkana Rüland The Cubic-to-Orthorhombic Phase Transition: Rigidity and Non-Rigidity Properties in the Linear Theory of Elasticity , 2016 .

[22]  Sergio Conti,et al.  Multiwell Rigidity in Nonlinear Elasticity , 2008, SIAM J. Math. Anal..

[23]  I. Daubechies,et al.  Harmonic analysis of the space BV. , 2003 .

[24]  N. Mishachev,et al.  Introduction to the ℎ-Principle , 2002 .

[25]  Camillo De Lellis,et al.  High dimensionality and h-principle in PDE , 2016, 1609.03180.

[26]  Aravaipa Canyon Basin,et al.  Volume 3 , 2012, Journal of Diabetes Investigation.

[27]  Thilo Simon,et al.  Rigidity of Branching Microstructures in Shape Memory Alloys , 2017, Archive for Rational Mechanics and Analysis.

[28]  Frédérique Oru Rôle des oscillations dans quelques problèmes d'analyse non-linéaire , 1998 .

[29]  S. Amelinckx,et al.  Phase transitions in ferroelastic lead orthovanadate as observed by means of electron microscopy and electron diffraction. II. Dynamic Observations , 1980 .

[30]  Journal de Mathématiques pures et appliquées , 1892 .

[31]  J. Nash C 1 Isometric Imbeddings , 1954 .

[32]  Joris,et al.  Commentarii Mathematici Helvetici , 2008 .

[33]  Y. Kitano,et al.  HREM study of disclinations in MgCd ordered alloy , 1991 .

[34]  N. Kuiper,et al.  On C1-isometric imbeddings. II , 1955 .

[35]  Paolo Marcellini,et al.  Lipschitz-continuous local isometric immersions: rigid maps and origami , 2008 .