Higher Sobolev Regularity of Convex Integration Solutions in Elasticity: The Dirichlet Problem with Affine Data in int(K^lc)
暂无分享,去创建一个
Christian Zillinger | Barbara Zwicknagl | Angkana Rüland | Angkana Rüland | B. Zwicknagl | C. Zillinger
[1] Vladimir Sverak,et al. Convex integration with constraints and applications to phase transitions and partial differential equations , 1999 .
[2] Peter Takáč,et al. The Maz’ya Anniversary Collection , 1999 .
[3] R. Jerrard,et al. On multiwell Liouville theorems in higher dimension , 2008, 0802.0850.
[4] Haimin Yao,et al. Journal of the Mechanics and Physics of Solids , 2014 .
[5] Sergio Conti,et al. Quasiconvex functions incorporating volumetric constraints are rank-one convex , 2008 .
[6] R. Toupin. ELASTIC MATERIALS WITH COUPLE STRESSES, ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS , 1962 .
[7] On the n-dimensional Dirichlet problem for isometric maps , 2008 .
[8] X. Ren,et al. Mathematics , 1935, Nature.
[9] S. Müller,et al. Microstructures with finite surface energy: the two-well problem , 1995 .
[10] F. Otto,et al. A rigidity result for a perturbation of the geometrically linear three‐well problem , 2009 .
[11] L. Székelyhidi. From Isometric Embeddings to Turbulence , 2010 .
[12] J. Stiegler. Materials Science and Engineering at ORNL , 1987 .
[13] J. Ball,et al. Fine phase mixtures as minimizers of energy , 1987 .
[14] Kenneth Falconer,et al. GEOMETRY OF SETS AND MEASURES IN EUCLIDEAN SPACES FRACTALS AND RECTIFIABILITY , 1996 .
[15] Florian Theil,et al. Single-Slip Elastoplastic Microstructures , 2005 .
[16] K. Bhattacharya. Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect , 2003 .
[17] Angkana Rüland,et al. Higher Sobolev Regularity of Convex Integration Solutions in Elasticity: The Planar Geometrically Linearized Hexagonal-to-Rhombic Phase Transformation , 2016, Journal of Elasticity.
[18] H. P.. Annales de l'Institut Henri Poincaré , 1931, Nature.
[19] Petru Mironescu,et al. Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces , 2001 .
[20] B. Kirchheim. Lipschitz minimizers of the 3-well problem having gradients of bounded variation , 1998 .
[21] Angkana Rüland. The Cubic-to-Orthorhombic Phase Transition: Rigidity and Non-Rigidity Properties in the Linear Theory of Elasticity , 2016 .
[22] Sergio Conti,et al. Multiwell Rigidity in Nonlinear Elasticity , 2008, SIAM J. Math. Anal..
[23] I. Daubechies,et al. Harmonic analysis of the space BV. , 2003 .
[24] N. Mishachev,et al. Introduction to the ℎ-Principle , 2002 .
[25] Camillo De Lellis,et al. High dimensionality and h-principle in PDE , 2016, 1609.03180.
[26] Aravaipa Canyon Basin,et al. Volume 3 , 2012, Journal of Diabetes Investigation.
[27] Thilo Simon,et al. Rigidity of Branching Microstructures in Shape Memory Alloys , 2017, Archive for Rational Mechanics and Analysis.
[28] Frédérique Oru. Rôle des oscillations dans quelques problèmes d'analyse non-linéaire , 1998 .
[29] S. Amelinckx,et al. Phase transitions in ferroelastic lead orthovanadate as observed by means of electron microscopy and electron diffraction. II. Dynamic Observations , 1980 .
[30] Journal de Mathématiques pures et appliquées , 1892 .
[31] J. Nash. C 1 Isometric Imbeddings , 1954 .
[32] Joris,et al. Commentarii Mathematici Helvetici , 2008 .
[33] Y. Kitano,et al. HREM study of disclinations in MgCd ordered alloy , 1991 .
[34] N. Kuiper,et al. On C1-isometric imbeddings. II , 1955 .
[35] Paolo Marcellini,et al. Lipschitz-continuous local isometric immersions: rigid maps and origami , 2008 .