Microstructural features of the femur in early ophiacodontids: A reappraisal of ancestral habitat use and lifestyle of amniotes
暂无分享,去创建一个
[1] V. Buffrénil,et al. Microstructure and Mineralization of Vertebrate Skeletal Tissues , 2013 .
[2] R. Haines. THE EVOLUTION OF EPIPHYSES AND OF ENDOCHONDRAL BONE , 1942 .
[3] E. de Margerie,et al. Bone typology and growth rate: testing and quantifying 'Amprino's rule' in the mallard (Anas platyrhynchos). , 2002, Comptes rendus biologies.
[4] Denys B. Smith. The Permian period , 2019, Geological Society, London, Special Publications.
[5] V. Buffrénil,et al. Microanatomy of the amniote femur and inference of lifestyle in limbed vertebrates , 2013 .
[6] J. Horner,et al. On the bone histology of some Triassic pseudosuchian archosaurs and related taxa , 2003 .
[7] J. Skulan. Has the importance of the amniote egg been overstated , 2000 .
[8] S. Grandin,et al. Expression de la dynamique de croissance dans la structure de l'os périostique chez Anas platyrhynchos , 1996 .
[9] M. Laurin,et al. CRANIAL MORPHOLOGY AND AFFINITIES OF MICROBRACHIS, AND A REAPPRAISAL OF THE PHYLOGENY AND LIFESTYLE OF THE FIRST AMPHIBIANS , 2004 .
[10] Robert L. Carroll,et al. Vertebrate Paleontology and Evolution , 1988 .
[11] M. Laurin,et al. Evolution of bone microanatomy of the tetrapod tibia and its use in palaeobiological inference , 2008, Journal of evolutionary biology.
[12] M. Girondot,et al. BONE PROFILER: A TOOL TO QUANTIFY, MODEL, AND STATISTICALLY COMPARE BONE-SECTION COMPACTNESS PROFILES , 2003 .
[13] F. Gradstein,et al. The Carboniferous Period , 2012 .
[14] V. Lance. Alligator physiology and life history: the importance of temperature , 2003, Experimental Gerontology.
[15] M. Laurin,et al. Microanatomy of the radius and lifestyle in amniotes (Vertebrata, Tetrapoda) , 2005 .
[16] R. Carroll. The earliest reptiles , 1964 .
[17] M. Girondot,et al. The evolution of long bone microstructure and lifestyle in lissamphibians , 2004, Paleobiology.
[18] J. Cubo,et al. Development-based revision of bone tissue classification: the importance of semantics for science , 2014 .
[19] D. Maddison,et al. Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .
[20] D. Enlow,et al. A comparative histological study of fossil and recent bone tissues. Part III. , 1957 .
[21] A. Romer,et al. TETRAPOD LIMBS AND EARLY TETRAPOD LIFE , 1958 .
[22] K. Martin,et al. Brave new propagules: terrestrial embryos in anamniotic eggs. , 2013, Integrative and comparative biology.
[23] K. Angielczyk,et al. Was Ophiacodon (Synapsida, Eupelycosauria) a Swimmer? A Test Using Vertebral Dimensions , 2014 .
[24] Michel Laurin,et al. Bone microanatomy and lifestyle: A descriptive approach , 2011 .
[25] D. Newman,et al. Skeletochronological data on the growth, age, and population structure of the tuatara, Sphenodon punctatus, on Stephens and Lady Alice islands, New Zealand , 1988 .
[26] A. Romer,et al. Review of the Pelycosauria , 1940 .
[27] M. Laurin. Anatomy and relationships of Haptodus garnettensis, a Pennsylvanian synapsid from Kansas , 1993 .
[28] J. Castanet,et al. Age Estimation by Skeletochronology in the Nile Monitor (Varanus niloticus), a Highly Exploited Species , 2000 .
[29] J. G. Carter. Skeletal biomineralization : patterns, processes, and evolutionary trends , 1991 .
[30] M. Benton,et al. Discussion on ecology of earliest reptiles inferred from basal Pennsylvanian trackwaysJournal, Vol. 164, 2007, 1113–1118 , 2008, Journal of the Geological Society.
[31] J. Gibbons,et al. Indeterminate growth in long-lived freshwater turtles as a component of individual fitness , 2012, Evolutionary Ecology.
[32] M. Buchwitz,et al. On the use of osteoderm features in a phylogenetic approach on the internal relationships of the Chroniosuchia (Tetrapoda: Reptiliomorpha) , 2012 .
[33] A. Huttenlocker,et al. Comparative anatomy and osteohistology of hyperelongate neural spines in the sphenacodontids Sphenacodon and Dimetrodon (Amniota: Synapsida) , 2010, Journal of morphology.
[34] S. Lucas. Global Permian tetrapod biostratigraphy and biochronology , 2006, Geological Society, London, Special Publications.
[35] V. Buffrénil,et al. Geometric and metabolic constraints on bone vascular supply in diapsids , 2014 .
[36] P. Ahlberg,et al. Tetrapod trackways from the early Middle Devonian period of Poland , 2010, Nature.
[37] R. Ryan,et al. Stratigraphy and sedimentology of early Pennsylvanian red beds at Lower Cove, Nova Scotia, Canada: the Little River Formation with redefinition of the Joggins Formation , 2006 .
[38] A. Houssaye,et al. Bone vascular supply in monitor lizards (Squamata: Varanidae): Influence of size, growth, and phylogeny , 2008, Journal of morphology.
[39] O. B. Goin,et al. AMPHIBIAN EGGS AND THE MONTANE ENVIRONMENT , 1962 .
[40] R. Reisz,et al. The cranial anatomy and relationships of Secodontosaurus, an unusual mammal-like reptile (Synapsida: Sphenacodontidae) from the early Permian of Texas , 1992 .
[41] E. Margerie,et al. Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus) , 2004, Journal of Experimental Biology.
[42] H. Messel,et al. Growth Rates of Crocodylus Porosus (Reptilia: Crocodilia) From Arnhem Land, Northern Australia. , 1978 .
[43] M. Laurin,et al. Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on palaeobiological inferences , 2010 .
[44] J. Horner,et al. Osteohistological Evidence for Determinate Growth in the American Alligator , 2011 .
[45] K. Adam,et al. Analysis of Growth Rates , 2013 .
[46] M. Báez,et al. Adaptation and evolution in Gallotia lizards from the Canary Islands: age, growth, maturity and longevity , 1991 .
[47] A. Romer. The primitive reptile Limnoscelis restudied , 1946 .
[48] L. Brand,et al. Fossil vertebrate footprints in the Coconino Sandstone (Permian) of northern Arizona: Evidence for underwater origin , 1991 .
[49] Vivian de Buffrénil,et al. Variation in Longevity, Growth, and Morphology in Exploited Nile Monitors (Varanus niloticus) from Sahelian Africa , 2002 .
[50] R. Benson. Interrelationships of basal synapsids: cranial and postcranial morphological partitions suggest different topologies , 2012 .