A Bayesian Approach to Subkilometer Crater Shape Analysis Using Individual HiRISE Images

The ages of terrains on other planetary bodies are chiefly determined using crater size–frequency distributions. However, primary impacts can generate numerous secondary craters that can affect the crater population. Classifying impact craters as primary or secondary is commonly done via time-consuming manual inspection, which limits the areas that can be analyzed at high resolution. We present a parametric model for characterizing small (100–600 m diameter) impact craters, where the model parameters have implications for describing the physical processes involved in their formation and modification. We infer these parameters from craters in images captured by the high-resolution imaging science experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter. For each crater within the appropriate size range, our algorithm creates a 3-D surface for a parametrically modeled crater and a 2-D rendering using illumination metadata, including emission, phase, and solar incidence angles at the time when the image was captured. A function describes the likelihood of each set of model parameters in terms of the geometry of craters in a given HiRISE image. These values are then optimized using a Metropolis–Hasting Markov chain Monte Carlo sampler. We evaluated three different prior probability distributions over the parameter space and two different likelihoods: one for digital terrain models and the other for images. We show that after applying t-distributed stochastic neighbor embedding (t-SNE) over the inferred crater parameters, t-SNE is able to project the multidimensional crater parameters into a 2-D space where secondary craters cluster together and are separable from primary craters.

[1]  Alfred S. McEwen,et al.  Role of material properties in the cratering record of young platy‐ridged lava on Mars , 2010 .

[2]  Pedro Pina,et al.  Crater Detection by a Boosting Approach , 2009, IEEE Geoscience and Remote Sensing Letters.

[3]  R. Lotufo,et al.  Morphological Image Processing , 2008 .

[4]  Pedro Pina,et al.  Automatic Recognition of Impact Craters on the Surface of Mars , 2004, ICIAR.

[5]  A. McEwen,et al.  Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter‐scale slopes of candidate Phoenix landing sites , 2008 .

[6]  Matematiksel Morfoloji,et al.  MORPHOLOGICAL IMAGE PROCESSİNG WITH FUZZY LOGIC , 2006 .

[7]  Livio L. Tornabene,et al.  Louth crater: Evolution of a layered water ice mound , 2008 .

[8]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[9]  Xindong Wu,et al.  Subkilometer crater discovery with boosting and transfer learning , 2011, TIST.

[10]  Stephanie C. Werner,et al.  Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains , 2009 .

[11]  Alfred S. McEwen,et al.  The current martian cratering rate , 2010 .

[12]  Gregory Valiant,et al.  Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries , 2006 .

[13]  Gang Yang,et al.  A novel sparse boosting method for crater detection in the high resolution planetary image , 2015 .

[14]  Katja Nowick,et al.  The Origin of Planetary Impactors in the Inner Solar System , 2005 .

[15]  Brian M. Hynek,et al.  A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters , 2012 .

[16]  Tingting Lv,et al.  Crater Detection via Convolutional Neural Networks , 2016, ArXiv.

[17]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[18]  R. J. Sullivan,et al.  Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars , 2014 .

[19]  Boris A. Ivanov,et al.  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[20]  Wei Ding,et al.  Detection of Sub-Kilometer Craters in High Resolution Planetary Images Using Shape and Texture Features , 2012 .

[21]  Randolph L. Kirk,et al.  The rayed crater Zunil and interpretations of small impact craters on Mars , 2005 .

[22]  Clark F. Olson,et al.  Optical landmark detection for spacecraft navigation , 2003 .

[23]  Pedro Pina,et al.  Impact Crater Recognition on Mars Based on a Probability Volume Created by Template Matching , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Xindong Wu,et al.  Crater detection using Bayesian classifiers and LASSO , 2013, IEEE Conference Anthology.

[25]  J. Muller,et al.  Automated crater detection, a new tool for Mars cartography and chronology , 2005 .

[26]  Herbert Jahn Crater detection by linear filters representing the Hough Transform , 1994, Other Conferences.

[27]  Darren J. Kerbyson,et al.  Size invariant circle detection , 1999, Image Vis. Comput..

[28]  John W. Holt,et al.  Widespread excess ice in Arcadia Planitia, Mars , 2015, 1509.03210.

[29]  Sven Loncaric,et al.  Method for Crater Detection From Martian Digital Topography Data Using Gradient Value/Orientation, Morphometry, Vote Analysis, Slip Tuning, and Calibration , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[30]  William K. Hartmann,et al.  Martian cratering 8: Isochron refinement and the chronology of Mars , 2005 .

[31]  Tomasz F. Stepinski,et al.  Automatic detection of sub-km craters in high resolution planetary images , 2009 .

[32]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[33]  Kenneth E. Herkenhoff,et al.  A revised surface age for the North Polar Layered Deposits of Mars , 2016 .

[34]  M. J. Wolff,et al.  Surface scattering properties at the Opportunity Mars rover's traverse region measured by CRISM , 2013 .

[35]  Edward J. Delp,et al.  Morphological operations for color image processing , 1999, J. Electronic Imaging.

[36]  Alfred S. McEwen,et al.  THE IMPORTANCE OF SECONDARY CRATERING TO AGE CONSTRAINTS ON PLANETARY SURFACES , 2006 .

[37]  nasa,et al.  Standard techniques for presentation and analysis of crater size-frequency data , 2019 .

[38]  N. G. Barlow,et al.  INVESTIGATION OF THE RELATIONSHIP OF CRATER DEPTHS AND DIAMETERS IN SELECTED REGIONS OF MARS , 2013 .