Design Tools for an Emerging SoC Technology: Quantum-Dot Cellular Automata

The future of system-on-chip (SoC) technologies, based on the scaling of current FET-based integrated circuitry, is being predicted to reach fabrication limits by the year 2015. Economic limits may be reached before that time. Continued scaling of electronic devices to molecular scales will undoubtedly require a paradigm shift from the FET-based switch to an alternative mechanism of information representation and processing. This paradigm shift will also have to encompass the tools and design culture that have made the current SoC technology possible-the ability to design monolithic integrated circuits with many hundreds of millions of transistors. In this paper, we examine the initial development of a tool to automate the design of one of the promising emerging nanoelectronic technologies, quantum-dot cellular automata, which has been proposed as a computing paradigm based on single electron effects within quantum dots and molecules.

[1]  Z. Li,et al.  Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a Au surface by an organic linker. , 2003, Inorganic chemistry.

[2]  Niraj K. Jha,et al.  Threshold network synthesis and optimization and its application to nanotechnologies , 2005 .

[3]  Giuseppe Iannaccone,et al.  Semiclassical simulation of quantum cellular automaton circuits , 2001 .

[4]  Gary H. Bernstein,et al.  Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors , 2003 .

[5]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[6]  Ramesh Karri,et al.  Towards designing robust QCA architectures in the presence of sneak noise paths , 2005, Design, Automation and Test in Europe.

[7]  Lent,et al.  Theoretical study of molecular quantum dot cellular automata , 2004 .

[8]  C. Lent,et al.  Maxwell's demon and quantum-dot cellular automata , 2003 .

[9]  Shu-Fen Hu,et al.  Coulomb blockade oscillations in ultrathin gate oxide silicon single-electron transistors , 2005 .

[10]  P. D. Tougaw,et al.  Lines of interacting quantum‐dot cells: A binary wire , 1993 .

[11]  Gary H. Bernstein,et al.  Observation of switching in a quantum-dot cellular automata cell , 1999 .

[12]  Jing Huang,et al.  Defect characterization for scaling of QCA devices [quantum dot cellular automata ] , 2004 .

[13]  P. D. Tougaw,et al.  Dynamic behavior of quantum cellular automata , 1996 .

[14]  Craig S. Lent,et al.  Role of correlation in the operation of quantum-dot cellular automata , 2001 .

[15]  Sung Kyu Lim,et al.  Partitioning and placement for buildable QCA circuits , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..

[16]  Craig S. Lent,et al.  An architecture for molecular computing using quantum-dot cellular automata , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[17]  Gary H. Bernstein,et al.  Experimental demonstration of a leadless quantum-dot cellular automata cell , 2000 .

[18]  Vassil S. Dimitrov,et al.  RAM Design Using Quantum-Dot Cellular Automata , 2003 .

[19]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[20]  Graham A. Jullien,et al.  Simple 4-bit processor based on quantum-dot cellular automata (QCA) , 2005, 2005 IEEE International Conference on Application-Specific Systems, Architecture Processors (ASAP'05).

[21]  Wolfgang Porod,et al.  Nanocomputing by field-coupled nanomagnets , 2002 .

[22]  G. Tóth,et al.  QUASIADIABATIC SWITCHING FOR METAL-ISLAND QUANTUM-DOT CELLULAR AUTOMATA , 1999, cond-mat/0004457.

[23]  Wei Wang,et al.  Quantum-dot cellular automata adders , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[24]  Grant Martin,et al.  Surviving the SOC Revolution: A Guide to Platform-Based Design , 1999 .

[25]  Mehdi Baradaran Tahoori,et al.  Quantum cellular automata: new defects and faults for new devices , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[26]  M. Lieberman,et al.  Thermodynamic behavior of molecular-scale quantum-dot cellular automata (QCA) wires and logic devices , 2004, IEEE Transactions on Nanotechnology.

[27]  Mehdi Baradaran Tahoori,et al.  Testing of quantum dot cellular automata based designs , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[28]  J.A. Abraham,et al.  Complex gate implementations for quantum dot cellular automata , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[29]  A. Orailoglu,et al.  Fault tolerant quantum cellular array (QCA) design using triple modular redundancy with shifted operands , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..

[30]  C. Lent,et al.  Molecular quantum-dot cellular automata , 2003 .

[31]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[32]  C. Lent,et al.  Clocked molecular quantum-dot cellular automata , 2003 .

[33]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[34]  C. Lent,et al.  Clocked quantum-dot cellular automata shift register , 2003 .

[35]  E.W. Johnson,et al.  Serial bit-stream analysis using quantum-dot cellular automata , 2004, IEEE Transactions on Nanotechnology.

[36]  G. Jullien,et al.  Circuit design based on majority gates for applications with quantum-dot cellular automata , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[37]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[38]  G. Tóth,et al.  Experimental demonstration of a latch in clocked quantum-dot cellular automata , 2001 .

[39]  Mehdi Baradaran Tahoori,et al.  Defects and faults in quantum cellular automata at nano scale , 2004, 22nd IEEE VLSI Test Symposium, 2004. Proceedings..

[40]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[41]  T.J. Dysart,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2001 .

[42]  Mehdi Baradaran Tahoori,et al.  Design and characterization of an and-or-inverter (AOI) gate for QCA implementation , 2004, GLSVLSI '04.

[43]  G.A. Jullien,et al.  High Level Exploration of Quantum-Dot Cellular Automata (QCA) , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[44]  P. D. Tougaw,et al.  Bistable saturation in coupled quantum dots for quantum cellular automata , 1993 .

[45]  Vassil S. Dimitrov,et al.  QCADesigner: A CAD Tool for an Emerging Nano-Technology , 2003 .

[46]  Jieying Jiao,et al.  Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. , 2003, Journal of the American Chemical Society.

[47]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[48]  G. Tóth Correlation and coherence in quantum-dot cellular automata , 2000 .

[49]  Peter M. Kogge,et al.  Strategy and prototype tool for doing fault modeling in a nano-technology , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[50]  Vassil S. Dimitrov,et al.  Computer arithmetic structures for quantum cellular automata , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[51]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[52]  G. Iannaccone,et al.  Thermal behavior of quantum cellular automaton wires , 2000 .

[53]  P. D. Tougaw,et al.  Bistable saturation in coupled quantum‐dot cells , 1993 .

[54]  S. Bhanja,et al.  Graphical probabilistic inference for ground state and near-ground state computing in QCA circuits , 2005, 5th IEEE Conference on Nanotechnology, 2005..

[55]  P. D. Tougaw,et al.  AN ALTERNATIVE GEOMETRY FOR QUANTUM-DOT CELLULAR AUTOMATA , 1999 .

[56]  Andrew D. Greentree,et al.  Single-shot readout with the radio-frequency single-electron transistor in the presence of charge noise , 2003 .