Scalable 2D Convex Hull and Triangulation Algorithms for Coarse Grained Multicomputers

In this paper we describe scalable parallel algorithms for building the convex hull and a triangulation ofncoplanar points. These algorithms are designed for thecoarse grained multicomputermodel:pprocessors withO(n/p)?O(1) local memory each, connected to some arbitrary interconnection network. They scale over a large range of values ofnandp, assuming only thatn?p1+?(?>0) and require timeO((Tsequential/p)+Ts(n,p)), whereTs(n,p) refers to the time of a global sort ofndata on approcessor machine. Furthermore, they involve only a constant number of global communication rounds. Since computing either 2D convex hull or triangulation requires timeTsequential=?(nlogn) these algorithms either run in optimal time,?((nlogn)/p), or in sort time,Ts(n,p), for the interconnection network in question. These results become optimal whenTsequential/pdominatesTs(n,p) or for interconnection networks like the mesh for which optimal sorting algorithms exist.

[1]  Leslie G. Valiant,et al.  Direct Bulk-Synchronous Parallel Algorithms , 1994, J. Parallel Distributed Comput..

[2]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[3]  Claire Mathieu,et al.  Scalable and architecture independent parallel geometric algorithms with high probability optimal time , 1994, Proceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing.

[4]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[5]  Selim G. Akl,et al.  A constant-time parallel algorithm for computing convex hulls , 1982, BIT.

[6]  Xiaotie Deng,et al.  Good algorithm design style for multiprocessors , 1994, Proceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing.

[7]  Andrew Rau-Chaplin,et al.  Scalable parallel geometric algorithms for coarse grained multicomputers , 1993, SCG '93.

[8]  Leslie G. Valiant,et al.  A logarithmic time sort for linear size networks , 1982, STOC.

[9]  S. N. Maheshwari,et al.  Parallel algorithms for the convex hull problem in two dimensions , 1981, CONPAR.

[10]  Yung H. Tsin,et al.  An O(log n) Time Parallel Algorithm for Triangulating a Set of Points in the Plane , 1987, Inf. Process. Lett..

[11]  Charles E. Leiserson,et al.  Randomized Routing on Fat-Trees , 1989, Adv. Comput. Res..

[12]  Bernard Chazelle Computational Geometry on a Systolic Chip , 1984, IEEE Transactions on Computers.

[13]  Leslie G. Valiant,et al.  General Purpose Parallel Architectures , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[14]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[15]  Jyh-Jong Tsay,et al.  External-memory computational geometry , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[16]  Leslie G. Valiant,et al.  A bridging model for parallel computation , 1990, CACM.

[17]  Mikhail J. Atallah,et al.  On the parallel decomposability of geometric problems , 1989, SCG '89.

[18]  Russ Miller,et al.  Efficient Parallel Convex Hull Algorithms , 1988, IEEE Trans. Computers.

[19]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[20]  Xiaotie Deng,et al.  A randomized parallel 3D convex hull algorithm for coarse grained multicomputers , 1995, SPAA '95.

[21]  C. Greg Plaxton,et al.  Deterministic sorting in nearly logarithmic time on the hypercube and related computers , 1990, STOC '90.

[22]  Kenneth L. Clarkson,et al.  Fast linear expected-time algorithms for computing maxima and convex hulls , 1993, SODA '90.

[23]  Michael T. Goodrich,et al.  Communication-Efficient Parallel Sorting , 1999, SIAM J. Comput..

[24]  Quentin F. Stout,et al.  Asymptotically efficient hypercube algorithms for computational geometry , 1990, [1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation.

[25]  Ramesh Subramonian,et al.  LogP: towards a realistic model of parallel computation , 1993, PPOPP '93.

[26]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[27]  Selim G. Akl,et al.  Parallel computational geometry , 1992 .

[28]  Afonso Ferreira,et al.  Scalable 2d convex hull and triangulation algorithms for coarse grained multicomputers , 1995, Proceedings.Seventh IEEE Symposium on Parallel and Distributed Processing.