Bandwidth and low dimensional embedding
暂无分享,去创建一个
[1] J. M. Sek. On embedding trees into uniformly convex Banach spaces , 1999 .
[2] Kenneth Ward Church,et al. Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..
[3] Robert Krauthgamer,et al. Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[4] Patrice Assouad. Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .
[5] Stephen Semmes,et al. On the nonexistence of bilipschitz parameterizations and geometric problems about $A_\infty$-weights , 1996 .
[6] Anupam Gupta,et al. Cuts, Trees and ℓ1-Embeddings of Graphs* , 2004, Comb..
[7] Yuri Rabinovich,et al. A Lower Bound on the Distortion of Embedding Planar Metrics into Euclidean Space , 2002 .
[8] Ashish Goel,et al. Embedding Bounded Bandwidth Graphs into l1 , 2006, ICALP.
[9] P. Assouad. Plongements lipschitziens dans Rn , 2003 .
[10] J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .
[11] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[12] Uriel Feige,et al. Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..
[13] Ittai Abraham,et al. Embedding metric spaces in their intrinsic dimension , 2008, SODA '08.
[14] J. Bourgain. The metrical interpretation of superreflexivity in banach spaces , 1986 .
[15] József Beck,et al. An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.
[16] Sunil Arya,et al. Space-time tradeoffs for approximate nearest neighbor searching , 2009, JACM.
[17] David Sankoff,et al. Generalized Gene Adjacencies, Graph Bandwidth and Clusters in Yeast Evolution , 2008, ISBRA.
[18] P. Assouad. Plongements lipschitziens dans ${\bbfR}\sp n$ , 1983 .
[19] James R. Lee,et al. Embeddings of Topological Graphs: Lossy Invariants, Linearization, and 2-Sums , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[20] Uriel Feige,et al. Approximating the bandwidth via volume respecting embeddings (extended abstract) , 1998, STOC '98.
[21] Norman E. Gibbs,et al. The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.
[22] Satish Rao,et al. Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.
[23] Anupam Gupta,et al. Embedding k-outerplanar graphs into ℓ1 , 2003, SODA '03.