Bandwidth and low dimensional embedding

We design an algorithm to embed graph metrics into @?"p with dimension and distortion both dependent only upon the bandwidth of the graph. In particular, we show that any graph of bandwidth k embeds with distortion polynomial in k into @?"p^O^(^l^o^g^k^), 1=

[1]  J. M. Sek On embedding trees into uniformly convex Banach spaces , 1999 .

[2]  Kenneth Ward Church,et al.  Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..

[3]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[4]  Patrice Assouad Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .

[5]  Stephen Semmes,et al.  On the nonexistence of bilipschitz parameterizations and geometric problems about $A_\infty$-weights , 1996 .

[6]  Anupam Gupta,et al.  Cuts, Trees and ℓ1-Embeddings of Graphs* , 2004, Comb..

[7]  Yuri Rabinovich,et al.  A Lower Bound on the Distortion of Embedding Planar Metrics into Euclidean Space , 2002 .

[8]  Ashish Goel,et al.  Embedding Bounded Bandwidth Graphs into l1 , 2006, ICALP.

[9]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[10]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[11]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[12]  Uriel Feige,et al.  Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..

[13]  Ittai Abraham,et al.  Embedding metric spaces in their intrinsic dimension , 2008, SODA '08.

[14]  J. Bourgain The metrical interpretation of superreflexivity in banach spaces , 1986 .

[15]  József Beck,et al.  An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.

[16]  Sunil Arya,et al.  Space-time tradeoffs for approximate nearest neighbor searching , 2009, JACM.

[17]  David Sankoff,et al.  Generalized Gene Adjacencies, Graph Bandwidth and Clusters in Yeast Evolution , 2008, ISBRA.

[18]  P. Assouad Plongements lipschitziens dans ${\bbfR}\sp n$ , 1983 .

[19]  James R. Lee,et al.  Embeddings of Topological Graphs: Lossy Invariants, Linearization, and 2-Sums , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[20]  Uriel Feige,et al.  Approximating the bandwidth via volume respecting embeddings (extended abstract) , 1998, STOC '98.

[21]  Norman E. Gibbs,et al.  The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.

[22]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[23]  Anupam Gupta,et al.  Embedding k-outerplanar graphs into ℓ1 , 2003, SODA '03.