Thermal system identification using fractional models for high temperature levels around different operating points

This work aims at the preparation of an experiment for the thermal modeling of an ARMCO iron sample (iron of the American Rolling Mill COmpany) for small temperature variations around different operating points. Fractional models have proven their efficacy for modeling thermal diffusion around the ambient temperature and for small variations. Due to their compactness, as compared to rational models and to finite element models, they are suitable for modeling such diffusive phenomena. However, for large temperature variations, thermal characteristics such as thermal conductivity and specific heat vary along with the temperature. In this context, the thermal diffusion obeys a nonlinear partial differential equation and cannot be modeled by a single linear model. In this paper, thermal diffusion of the iron sample is modeled around different operating points for temperatures ranging from 400 to 1070 K, which is above the Curie point (In physics and materials science, the Curie temperature (TC), or Curie point, is the temperature at which a ferromagnetic or a ferrimagnetic material becomes paramagnetic.) showing that for a large range of temperature variations, a nonlinear model is required. Identification and validation data are generated by finite element methods using COMSOL Software.

[1]  Jean-Luc Battaglia,et al.  Estimation of heat fluxes during high-speed drilling , 2005 .

[2]  Thierry Poinot,et al.  Estimation of thermal parameters using fractional modelling , 2011, Signal Process..

[3]  A. Oustaloup,et al.  Fractional state variable filter for system identification by fractional model , 2001, 2001 European Control Conference (ECC).

[4]  H. Akçay,et al.  Thermal modeling and identification of an aluminum rod using fractional calculus , 2009 .

[5]  Auke Jan Ijspeert,et al.  Fractional Multi-models of the Frog Gastrocnemius Muscle , 2008 .

[6]  Jerome Spanier,et al.  A general solution of the diffusion equation for semiinfinite geometries , 1972 .

[7]  S. Rodrigues,et al.  A review of state-of-charge indication of batteries by means of a.c. impedance measurements , 2000 .

[8]  I. Podlubny Fractional differential equations , 1998 .

[9]  Alain Oustaloup,et al.  Advances in System Identification Using Fractional Models , 2008 .

[10]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[11]  K. B. Oldham,et al.  The replacement of Fick's laws by a formulation involving semidifferentiation , 1970 .

[12]  Alain Oustaloup,et al.  On Lead-Acid-Battery Resistance and Cranking-Capability Estimation , 2010, IEEE Transactions on Industrial Electronics.

[13]  Hugues Garnier,et al.  An optimal instrumental variable method for continuous-time fractional model identification , 2008 .

[14]  N. Heymans,et al.  Fractional Calculus Description of Non-Linear Viscoelastic Behaviour of Polymers , 2004 .

[15]  B. Riemann,et al.  Versuch einer allgemeinen Auffassung der Integration und Differentiation. (1847.) , 2013 .

[16]  Om P. Agrawal,et al.  Application of Fractional Derivatives in Thermal Analysis of Disk Brakes , 2004 .

[17]  St'ephane Dugowson,et al.  Les différentielles métaphysiques : histoire et philosophie de la généralisation de l'ordre de la dérivation , 1994 .

[18]  Alain Oustaloup,et al.  Synthesis of fractional Laguerre basis for system approximation , 2007, Autom..

[19]  Thierry Poinot,et al.  Fractional modelling and identification of thermal systems , 2011, Signal Process..

[20]  A. Oustaloup,et al.  Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction , 2000 .

[21]  T. Poinot,et al.  Identification of Fractional Systems Using an Output-Error Technique , 2004 .

[22]  K. B. Oldham Diffusive transport to planar, cylindrical and spherical electrodes , 1973 .

[23]  J. Battaglia,et al.  Thermal identification using fractional linear models in high temperatures , 2010 .

[24]  Alain Oustaloup,et al.  Non Integer Model from Modal Decomposition for Time Domain System Identification , 2000 .

[25]  K. Adolfsson Nonlinear Fractional Order Viscoelasticity at Large Strains , 2004 .

[26]  第11回システム同定に関するIFAC国際会議“SYSID'97”を終えて , 1997 .

[27]  Auke Jan Ijspeert,et al.  FRACTIONAL MULTI-MODELS OF THE GASTROCNEMIUS FROG MUSCLE , 2006 .

[28]  Xavier Moreau,et al.  Stability and resonance conditions of elementary fractional transfer functions , 2011, Autom..

[29]  Alain Oustaloup,et al.  Fractional system identification for lead acid battery state of charge estimation , 2006, Signal Process..