The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry
暂无分享,去创建一个
[1] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[2] E. Lutwak,et al. Sharp Affine LP Sobolev Inequalities , 2002 .
[3] Xu-jia Wang,et al. A logarithmic Gauss curvature flow and the Minkowski problem , 2000 .
[4] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[5] B. Andrews,et al. Motion of hypersurfaces by Gauss curvature , 2000 .
[6] L. Nirenberg,et al. Partial Differential Equations Invariant under Conformal or Projective Transformations , 1974 .
[7] Ben Andrews,et al. Evolving convex curves , 1998 .
[8] Juncheng Wei,et al. Self-similar solutions for the anisotropic affine curve shortening problem , 2001 .
[9] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[10] B. Andrews. Classification of limiting shapes for isotropic curve flows , 2002 .
[11] L. Caffarelli. Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation , 1990 .
[12] Erwin Lutwak,et al. The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem , 1993 .
[13] E. Lutwak,et al. On the _{}-Minkowski problem , 2003 .
[14] Wm. J. Firey,et al. $p$-Means of Convex Bodies. , 1962 .
[15] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[16] Luis A. Caffarelli,et al. A localization property of viscosity solutions to the Monge-Ampere equation and their strict convexity , 1990 .
[17] J. Urbas. Complete noncompact self-similar solutions of Gauss curvature flows I. Positive powers , 1998, Advances in Differential Equations.
[18] B. Andrews. Gauss curvature flow: the fate of the rolling stones , 1999 .
[19] M. Georges Tzitzéica,et al. Sur une nouvelle classe de surfaces , 1908 .
[20] Xu-jia Wang,et al. A variational theory of the Hessian equation , 2001 .
[21] Shing-Tung Yau,et al. On the regularity of the monge‐ampère equation det (∂2 u/∂xi ∂xj) = f(x, u) , 1977 .
[22] V. Oliker,et al. On the regularity of solutions to a generalization of the Minkowski problem , 1995 .