Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills

The Moessbauer spectrometer on Spirit measured the oxidation state of Fe, identified Fe-bearing phases, and measured relative abundances of Fe among those phases for surface materials on the plains and in the Columbia Hills of Gusev crater. Eight Fe-bearing phases were identified: olivine, pyroxene, ilmenite, magnetite, nanophase ferric oxide (npOx), hematite, goethite, and a Fe(3+)-sulfate. Adirondack basaltic rocks on the plains are nearly unaltered (Fe(3+)/Fe(sub T) Px), and minor npOx and magnetite. Columbia Hills basaltic rocks are nearly unaltered (Peace and Backstay), moderately altered (WoolyPatch, Wishstone, and Keystone), and pervasively altered (e.g., Clovis, Uchben, Watchtower, Keel, and Paros with Fe(3+)/Fe(sub T) approx.0.6-0.9). Fe from pyroxene is greater than Fe from olivine (Ol sometimes absent), and Fe(2+) from Ol+Px is 40-49% and 9-24% for moderately and pervasively altered materials, respectively. Ilmenite (Fe from Ilm approx.3-6%) is present in Backstay, Wishstone, Keystone, and related rocks along with magnetite (Fe from Mt approx. 10-15%). Remaining Fe is present as npOx, hematite, and goethite in variable proportions. Clovis has the highest goethite content (Fe from Gt=40%). Goethite (alpha-FeOOH) is mineralogical evidence for aqueous processes because it has structural hydroxide and is formed under aqueous conditions. Relatively unaltered basaltic soils (Fe(3+)/Fe(sub T) approx. 0.3) occur throughout Gusev crater (approx. 60-80% Fe from Ol+Px, approx. 10-30% from npOx, and approx. 10% from Mt). PasoRobles soil in the Columbia Hills has a unique occurrence of high concentrations of Fe(3+)-sulfate (approx. 65% of Fe). Magnetite is identified as a strongly magnetic phase in Martian soil and dust.

[1]  Jeffrey R. Johnson,et al.  Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .

[2]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[3]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[4]  William H. Farrand,et al.  Evidence of phyllosilicates in Wooly Patch, an altered rock encountered at West Spur, Columbia Hills, by the Spirit rover in Gusev crater, Mars , 2006 .

[5]  William H. Farrand,et al.  Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills , 2006 .

[6]  William H. Farrand,et al.  Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .

[7]  Jeffrey R. Johnson,et al.  Spectral variability among rocks in visible and near‐infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques , 2006 .

[8]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[9]  D. Ming,et al.  Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust , 2005, Nature.

[10]  D. Ming,et al.  Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater , 2005, Nature.

[11]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[12]  M. Darby Dyar,et al.  Spectroscopic evidence for hydrous iron sulfate in the Martian soil , 2004 .

[13]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[14]  R E Arvidson,et al.  Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover , 2004, Science.

[15]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater , 2004, Science.

[16]  D. Ming,et al.  Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater , 2004, Science.

[17]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[18]  J F Bell,et al.  Magnetic Properties Experiments on the Mars Exploration Rover Spirit at Gusev Crater , 2004, Science.

[19]  D. Ming,et al.  Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover , 2004, Science.

[20]  M. Dyar,et al.  Mössbauer spectroscopy on the surface of Mars: constraints and expectations , 2004 .

[21]  U. Bonnes,et al.  Athena MIMOS II Mossbauer spectrometer investigation , 2003 .

[22]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[23]  Per Nornberg,et al.  Magnetic Properties Experiments on the Mars Exploration Rover mission , 2003 .

[24]  U. Schwertmann,et al.  The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .

[25]  J. K. Crowley,et al.  Spectral reflectance properties (0.4–2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes , 2003, Geochemistry: Exploration, Environment, Analysis.

[26]  Richard V. Morris,et al.  Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust? , 2001 .

[27]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[28]  E. Paterson The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses , 1999 .

[29]  J. E. Dutrizac,et al.  Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials , 1998 .

[30]  J. M. Knudsen,et al.  The magnetic properties experiments on Mars Pathfinder , 1996 .

[31]  R. Morris,et al.  Hematite, pyroxene, and phyllosilicates on Mars: Implications from oxidized impact melt rocks from Manicouagan Crater, Quebec, Canada , 1995 .

[32]  H. V. Lauer,et al.  Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. , 1993, Geochimica et cosmochimica acta.

[33]  E. Grave,et al.  Evaluation of ferrous and ferric Mössbauer fractions , 1991 .

[34]  S. McKeever,et al.  Spectroscopic characterization of minerals and their surfaces , 1990 .

[35]  R. Vandenberghe,et al.  Mössbauer effect study of the spin structure in natural hematites , 1990 .

[36]  J. M. Knudsen,et al.  Titanomaghemite in magnetic soils on Earth and Mars , 1990 .

[37]  R. Morris,et al.  Origins of Marslike spectral and magnetic properties of a Hawaiian palagonitic soil , 1990 .

[38]  E. Murad,et al.  Iron Oxides and Oxyhydroxides , 1989 .

[39]  R. Morris,et al.  Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite , 1989 .

[40]  R. Morris,et al.  Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH). , 1985, Journal of geophysical research.

[41]  George R. Rossman,et al.  CHAPTER 3. PYROXENE SPECTROSCOPY , 1980 .

[42]  R. Arvidson,et al.  Viking magnetic properties experiment - Extended mission results , 1979 .

[43]  P. Gütlich,et al.  Mössbauer Spectroscopy and Transition Metal Chemistry , 1978 .

[44]  R. J. Floran,et al.  Manicouagan Impact Melt, Quebec, 1, Stratigraphy, petrology, and chemistry , 1978 .

[45]  R. J. Floran,et al.  Petrogenesis of melt rocks, Manicouagan Impact Structure, Quebec , 1978 .

[46]  R. J. Floran,et al.  Petrology, structure and origin of the Manicouagan melt sheet, Quebec, Canada - A preliminary report , 1976 .

[47]  A. Rosencwaig,et al.  Mössbauer spectroscopy of stoichiometric and non-stoichiometric magnetite , 1969 .

[48]  Shinjo Teruya,et al.  The Magnetic Properties of α-Fe2O2 Fine Particles , 1965 .

[49]  P. Cheeseman Paul Stolorz , Jet Propulsion Laboratory , California Institute of Technology , 2004 .

[50]  G. Plumlee Sulfate minerals- Crystallography, geochemistry and environmental significance , 2001 .

[51]  D. Nordstrom,et al.  Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters , 2000 .

[52]  Satish C. B. Myneni,et al.  X-Ray and Vibrational Spectroscopy of Sulfate in Earth Materials , 2000 .

[53]  G. Duclos New York 1987 , 2000 .

[54]  Paulo de Souza,et al.  Automation in Mössbauer spectroscopy data analysis , 1999 .

[55]  D. Rancourt Analytical Methods for Mössbauer Spectral Analysis of Complex Materials , 1996 .

[56]  J. Bishop,et al.  Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars , 1996 .

[57]  R. Burns,et al.  57Fe-bearing oxide, silicate, and aluminosilicate minerals: crystal structure trends in Mossbauer spectra , 1990 .

[58]  J. Steinmetz,et al.  Perturbation de l'échange électronique rapide par les lacunes cationiques dans Fe3−xO4(x≤0,09) , 1987 .

[59]  M. Kono,et al.  Mössbauer Spectra of Titanomagnetite , 1987 .

[60]  C. Simonds,et al.  West Clearwater, Quebec Impact Structure, Part II: Petrology , 1978 .