Block-wise Alternating Direction Method of Multipliers for Multiple-block Convex Programming and Beyond
暂无分享,去创建一个
[1] Marc Teboulle,et al. Rate of Convergence Analysis of Decomposition Methods Based on the Proximal Method of Multipliers for Convex Minimization , 2014, SIAM J. Optim..
[2] Xiaoming Yuan,et al. A proximal point algorithm revisit on the alternating direction method of multipliers , 2013, Science China Mathematics.
[3] D. Gabay. Applications of the method of multipliers to variational inequalities , 1983 .
[4] Zhi-Quan Luo,et al. On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.
[5] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[6] Bingsheng He,et al. A Strictly Contractive Peaceman-Rachford Splitting Method for Convex Programming , 2014, SIAM J. Optim..
[7] Bingsheng He,et al. Application of the Strictly Contractive Peaceman-Rachford Splitting Method to Multi-Block Separable Convex Programming , 2016 .
[8] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[9] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[10] H. H. Rachford,et al. On the numerical solution of heat conduction problems in two and three space variables , 1956 .
[11] Xiaoming Yuan,et al. A splitting method for separable convex programming , 2015 .
[12] Michael K. Ng,et al. Inexact Alternating Direction Methods for Image Recovery , 2011, SIAM J. Sci. Comput..
[13] William W. Hager,et al. An Alternating Direction Approximate Newton Algorithm for Ill-Conditioned Inverse Problems with Application to Parallel MRI , 2015 .
[14] Jonathan Eckstein. Augmented Lagrangian and Alternating Direction Methods for Convex Optimization: A Tutorial and Some Illustrative Computational Results , 2012 .
[15] Bingsheng He,et al. On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.
[16] Bingsheng He,et al. On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..
[17] Bingsheng He,et al. A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..
[18] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[19] Y. Nesterov. Gradient methods for minimizing composite objective function , 2007 .
[20] Junfeng Yang,et al. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization , 2012, Math. Comput..
[21] Xiaoming Yuan,et al. Convergence rate and iteration complexity on the alternating direction method of multipliers with a substitution procedure for separable convex programming , 2012 .
[22] Xiangfeng Wang,et al. The Linearized Alternating Direction Method of Multipliers for Dantzig Selector , 2012, SIAM J. Sci. Comput..
[23] Bingsheng He,et al. Linearized Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming , 2011 .
[24] Bingsheng He,et al. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.
[25] E. G. Gol'shtein,et al. Modified Lagrangians in Convex Programming and their Generalizations , 1979 .
[26] Xiaoming Yuan,et al. A Generalized Proximal Point Algorithm and Its Convergence Rate , 2014, SIAM J. Optim..
[27] Xiaoming Yuan,et al. Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..
[28] B. Martinet. Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .
[29] Yurii Nesterov,et al. Gradient methods for minimizing composite functions , 2012, Mathematical Programming.
[30] Bingsheng He,et al. On Full Jacobian Decomposition of the Augmented Lagrangian Method for Separable Convex Programming , 2015, SIAM J. Optim..
[31] Tony F. Chan,et al. A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..
[32] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[33] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[34] Roland Glowinski,et al. On Alternating Direction Methods of Multipliers: A Historical Perspective , 2014, Modeling, Simulation and Optimization for Science and Technology.
[35] John Wright,et al. RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[36] H. H. Rachford,et al. The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .
[37] R. Glowinski,et al. Numerical Methods for Nonlinear Variational Problems , 1985 .