Optical trapping at high temperature

Since Arthur Ashkin and coworkers found that focused laser beam could displace and levitate microsized particles, optical tweezers has turn out to be a reliable noncontact tool for 3D manipulation of micro-objects, allows sensing by using only a single particle. The further development of nanophotonics toward higher sensitivities and resolutions continues to stimulate optical trapping of smaller and smaller objects. While applied to sub 100 nm-particles, the optical force starts to get insufficient to trap or manipulate, and the trap potential starts to be comparable to the thermal energy. Although there are a lot of methods that have been proposed to enhance the optical force, few research gets insight of the temperature effect on optical trapping. In this work, we summarize our recent experimental results on thermal sensing experiments in which micro/nanoparticles are used as probes with the aim of providing a contemporary state-of-the-art about the temperature effects in the stability of potential trapping processes.

[1]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[2]  Gijs J. L. Wuite,et al.  Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation , 2006, Nature.

[3]  D. Jaque,et al.  Enhancing optical forces on fluorescent up-converting nanoparticles by surface charge tailoring. , 2015, Small.

[4]  D. Jaque,et al.  Optical trapping for biosensing: materials and applications. , 2017, Journal of materials chemistry. B.

[5]  Kishan Dholakia,et al.  Trapping in a material world , 2016 .

[6]  L. Oddershede,et al.  Two-photon quantum dot excitation during optical trapping. , 2010, Nano letters.

[7]  David Erickson,et al.  Nanomanipulation using silicon photonic crystal resonators. , 2010, Nano letters.

[8]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[9]  J. G. Solé,et al.  On the existence of two states in liquid water: impact on biological and nanoscopic systems , 2016 .

[10]  D. Erickson,et al.  Forces and transport velocities for a particle in a slot waveguide. , 2009, Nano letters.

[11]  D. Jaque,et al.  Single-Cell Biodetection by Upconverting Microspinners. , 2019, Small.

[12]  Yuchao Li,et al.  Single-cell biomagnifier for optical nanoscopes and nanotweezers , 2019, Light: Science & Applications.

[13]  Wei Huang,et al.  Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. , 2016, Nature nanotechnology.

[14]  D. Pang,et al.  Evaluation of Luminescence Properties of Single Hydrophilic Upconversion Nanoparticles by Optical Trapping , 2019, The Journal of Physical Chemistry C.

[15]  M. Bartoo,et al.  The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. , 1998, Biophysical journal.

[16]  S. Reihani,et al.  Optimized optical trapping of gold nanoparticles. , 2010, Optics express.

[17]  Hongbao Xin,et al.  Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet , 2016, Light: Science & Applications.

[18]  Lasse Evensen,et al.  Optical micromanipulation of nanoparticles and cells inside living zebrafish , 2016, Nature Communications.

[19]  David Erickson,et al.  Controlled photonic manipulation of proteins and other nanomaterials. , 2012, Nano letters.

[20]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[21]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[22]  Samara L. Reck-Peterson,et al.  Force-Induced Bidirectional Stepping of Cytoplasmic Dynein , 2007, Cell.

[23]  Francisco Esquembre,et al.  Easy Java Simulations: a software tool to create scientific simulations in Java , 2004 .

[24]  K. A. Brown,et al.  Measuring Nanoparticle Polarizability using Fluorescence Microscopy. , 2019, Nano letters.

[25]  L. Liz‐Marzán,et al.  Guiding Rules for Selecting a Nanothermometer , 2018 .

[26]  D. Jia,et al.  The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres , 2007 .

[27]  J. G. Solé,et al.  Optical trapping of NaYF4:Er3+,Yb3+ upconverting fluorescent nanoparticles. , 2013, Nanoscale.

[28]  R. Quidant,et al.  Three-dimensional manipulation with scanning near-field optical nanotweezers. , 2014, Nature nanotechnology.

[29]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[30]  Paloma Rodríguez-Sevilla,et al.  Thermal Scanning at the Cellular Level by an Optically Trapped Upconverting Fluorescent Particle , 2016, Advanced materials.

[31]  J. G. Solé,et al.  Investigation of the concentration- and temperature-dependent motion of colloidal nanoparticles. , 2020, Nanoscale.

[32]  E. Florin,et al.  Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid , 2011 .

[33]  D. Jaque,et al.  Optical Torques on Upconverting Particles for Intracellular Microrheometry. , 2016, Nano letters.

[34]  Dor Ben-Amotz,et al.  Water structural transformation at molecular hydrophobic interfaces , 2012, Nature.

[35]  Mark G. Raizen,et al.  Observation of Brownian Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss , 2014, Science.

[36]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[37]  J. Liao,et al.  Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles , 2021, Nature Nanotechnology.

[38]  Abhay Kotnala,et al.  Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer. , 2014, Nano letters.

[39]  D. Jaque,et al.  In Vivo Luminescence Nanothermometry: from Materials to Applications , 2017 .

[40]  A. Taflove,et al.  Photonic nanojets , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[41]  Cheng-Wei Qiu,et al.  Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects , 2017, Light: Science & Applications.

[42]  C. Shan,et al.  A flexible and superhydrophobic upconversion-luminescence membrane as an ultrasensitive fluorescence sensor for single droplet detection , 2016, Light: Science & Applications.

[43]  P. Domínguez-García,et al.  Brownian dynamics simulations to explore experimental microsphere diffusion with optical tweezers , 2017, ICCS.

[44]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[45]  A. Catenaccio,et al.  Temperature dependence of the permittivity of water , 2003 .

[46]  T. Davis,et al.  Brownian diffusion of nano-particles in optical traps. , 2007, Optics express.

[47]  J. P. Barton,et al.  Internal and near‐surface electromagnetic fields for a spherical particle irradiated by a focused laser beam , 1988 .

[48]  D. Jaque,et al.  Optical Forces at the Nanoscale: Size and Electrostatic Effects. , 2018, Nano letters (Print).

[49]  D. Jaque,et al.  Nanojet Trapping of a Single Sub-10 nm Upconverting Nanoparticle in the Full Liquid Water Temperature Range. , 2021, Small.

[50]  A. Ashkin,et al.  Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Biophysical journal.

[51]  D. Jaque,et al.  Exploring single-nanoparticle dynamics at high temperature by optical tweezers. , 2020, Nano letters.

[52]  Francisco Sanz-Rodríguez,et al.  Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells. , 2013, Small.

[53]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[54]  J. Wenger,et al.  Temperature Measurement in Plasmonic Nanoapertures Used for Optical Trapping , 2019, ACS Photonics.

[55]  D. Jaque,et al.  The Temperature of an Optically Trapped, Rotating Microparticle , 2018, ACS Photonics.

[56]  Yuchao Li,et al.  Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array. , 2016, ACS nano.

[57]  Halina Rubinsztein-Dunlop,et al.  Optical trapping of otoliths drives vestibular behaviours in larval zebrafish , 2017, Nature Communications.

[58]  Reuven Gordon,et al.  Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. , 2011, Nano letters.

[59]  Yuchao Li,et al.  Enhancing Upconversion Fluorescence with a Natural Bio-microlens. , 2017, ACS nano.