Multi-party bidirectional teleportation

Abstract In this contribution, a three-party bidirectional teleportation scheme is suggested, where the users initially share a maximally entangled three qubits state of the G H Z type. In this proposed scheme, it is assumed that each user has the unknown state to be teleported, a trigger state and two storage states. Any two members can teleport unknown information bidirectionally by the help of the third member who plays the role of a mediator. There are series of local operations and measurements are needed to perform the teleportation process. The maximization/minimization of the fidelity of the teleported state depends on the teleported information (classical/quantum), the trigger’s states of the receiver and the mediator. The phase angles of all states could be used as control parameters to improve the fidelity of the teleported state. The possibility of teleportating classical information is much better than teleportaiting quantum information. The possibility of generalizing this protocol to N users as members of quantum network which consists of n qubits of G H Z is discussed.

[1]  H. Amellal,et al.  Entanglement and quantum teleportation via dissipative cavities , 2019, Optics & Laser Technology.

[2]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[3]  Wei Zhang,et al.  Quantum teleportation with independent sources and prior entanglement distribution over a network , 2016, Nature Photonics.

[4]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[5]  Xiaolan Li,et al.  Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state , 2013, Quantum Inf. Process..

[6]  Ping Zhou,et al.  Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements , 2006 .

[7]  Soonchil Lee,et al.  Fidelity of quantum teleportation through noisy channels , 2002 .

[8]  S. Samanta,et al.  A controlled protocol for asymmetric cyclic $(A\Rightarrow B\Rightarrow C\Rightarrow A)$ quantum state transfer between three parties , 2019 .

[9]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[10]  M. Abdel-Aty,et al.  Quantum teleportation via entangled states generated by the Jaynes–Cummings model , 2004 .

[11]  Y. Hassouni,et al.  Communication via an entangled coherent quantum network , 2010, 1011.3915.

[12]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[13]  G. H. Aguilar,et al.  Quantum teleportation across a metropolitan fibre network , 2016, Nature Photonics.

[14]  Yan Feng-Li,et al.  Controlled quantum teleportation and secure direct communication , 2005 .

[15]  Braunstein,et al.  Multipartite entanglement for continuous variables: A quantum teleportation network , 1999, Physical review letters.

[16]  Y. Hassouni,et al.  Bidirectional teleportation using Fisher information , 2020, Modern Physics Letters A.

[17]  Yuan-hua Li,et al.  Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments , 2016, Quantum Inf. Process..

[18]  Sun Xin-me A Scheme of Bidirectional Quantum Controlled Teleportation via Six-qubit Maximally Entangled State , 2013 .

[19]  A. Furusawa,et al.  Demonstration of a quantum teleportation network for continuous variables , 2004, Nature.

[20]  Y. Hassouni,et al.  Bidirectional teleportation under correlated noise , 2021, The European Physical Journal D.

[21]  Monireh Houshmand,et al.  Bidirectional teleportation of a pure EPR state by using GHZ states , 2016, Quantum Inf. Process..

[22]  Zhi-wen Sang,et al.  Cyclic Controlled Teleportation by Using a Seven-Qubit Entangled State , 2018, International Journal of Theoretical Physics.

[23]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[24]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[25]  S. Huelga,et al.  Remote control of restricted sets of operations: Teleportation of Angles , 2001, quant-ph/0107110.

[26]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[27]  N. Metwally Entangled network and quantum communication , 2011, 1106.1261.

[28]  N. Metwally,et al.  Transfer information remotely via noise entangled coherent channels , 2010, 1002.2333.

[29]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[30]  London,et al.  Quantum Remote Control: Teleportation of Unitary Operations , 2000, quant-ph/0005061.

[31]  Min Nie,et al.  Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement* , 2017 .

[32]  Gösta Fürnkranz The Quantum Internet: Ultrafast and Safe from Hackers , 2020 .

[33]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[34]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[35]  Simone Severini,et al.  Quantum state transfer through a qubit network with energy shifts and fluctuations , 2009, 0904.4510.

[36]  S. Massar,et al.  Quantum information processing and communication , 2005 .

[37]  Christoph Simon,et al.  Towards a global quantum network , 2017, Nature Photonics.

[38]  Fuguo Deng,et al.  Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement , 2005, quant-ph/0501129.

[39]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[40]  A. Zeilinger,et al.  Communications: Quantum teleportation across the Danube , 2004, Nature.

[41]  A. Obada,et al.  More efficient purifying scheme via controlled¿controlled NOT gate , 2006, 0804.1538.

[42]  Akira Furusawa,et al.  Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing , 2011 .

[43]  S. Perseguers,et al.  Quantum random networks , 2009, 0907.3283.

[44]  A. K. Fedorov,et al.  Bidirectional imperfect quantum teleportation with a single Bell state , 2016, 1602.01420.