NEMO: neural enhancement for multiobjective optimization

In this paper, a neural network approach is presented to expand the Pareto-optimal front for multiobjective optimization problems. The network is trained using results obtained from the nondominated sorting genetic algorithm (NSGA-II) on a set of well-known benchmark multiobjective problems. Its performance is evaluated against NSGA-II, and the neural network is shown to perform extremely well. Using the same number of function evaluations, the neural network produces many times more non-dominated solutions than NSGA-II.

[1]  C. Coello,et al.  Years of Evolutionary Multi-Objective Optimization : What Has Been Done and What Remains To Be Done , 2006 .

[2]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[3]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[4]  Gerry V. Dozier,et al.  The Application of Evolutionary Computation in Evacuation Planning , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[5]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[6]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[7]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[8]  Bernhard Sendhoff,et al.  A critical survey of performance indices for multi-objective optimisation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[9]  Jürgen Teich,et al.  Covering Pareto-optimal fronts by subswarms in multi-objective particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[10]  Alice E. Smith,et al.  Neural Network Enhancement of Multiobjective Evolutionary Search , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[11]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[12]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithm test suites , 1999, SAC '99.

[13]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[14]  Michael D. Vose,et al.  The simple genetic algorithm - foundations and theory , 1999, Complex adaptive systems.

[15]  Andries P. Engelbrecht,et al.  Computational Intelligence: An Introduction , 2002 .

[16]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[17]  James L. McClelland,et al.  Explorations in parallel distributed processing: a handbook of models, programs, and exercises , 1988 .

[18]  David Wallace,et al.  Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach , 2006, GECCO.

[19]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[20]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[21]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[22]  D.A. Van Veldhuizen,et al.  On measuring multiobjective evolutionary algorithm performance , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[23]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[24]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[25]  Stephen Grossberg,et al.  The ART of adaptive pattern recognition by a self-organizing neural network , 1988, Computer.

[26]  D.R. Hush,et al.  Progress in supervised neural networks , 1993, IEEE Signal Processing Magazine.

[27]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[28]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[29]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.

[30]  Mario Aguilar,et al.  Biologically based sensor fusion for medical imaging , 2001, SPIE Defense + Commercial Sensing.

[31]  Juhani Koski,et al.  Multicriteria Design Optimization , 1990 .

[32]  Bernard Widrow,et al.  The basic ideas in neural networks , 1994, CACM.

[33]  Gerry V. Dozier,et al.  Training approaches in neural enhancement for multiobjective optimization , 2008, ACM-SE 46.

[34]  António Gaspar-Cunha,et al.  A Hybrid Multi-Objective Evolutionary Algorithm Using an Inverse Neural Network , 2004, Hybrid Metaheuristics.

[35]  Jürgen Teich,et al.  Covering Pareto Sets by Multilevel Evolutionary Subdivision Techniques , 2003, EMO.

[36]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[37]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[38]  Joel N. Morse,et al.  Reducing the size of the nondominated set: Pruning by clustering , 1980, Comput. Oper. Res..

[39]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[40]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[41]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[42]  Mario Aguilar,et al.  A recurrent neural network approach to virtual environment latency reduction , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[43]  Carlos A. Coello Coello,et al.  A Short Tutorial on Evolutionary Multiobjective Optimization , 2001, EMO.

[44]  Michael P. SanSoucie,et al.  Evacuation Planning via Evolutionary Computation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[45]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[46]  Mario Aguilar,et al.  Prediction of pitch and yaw head movements via recurrent neural networks , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[47]  David B. Fogel What is evolutionary computation , 1995 .

[48]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[49]  Donald F. Specht,et al.  A general regression neural network , 1991, IEEE Trans. Neural Networks.

[50]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[51]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[52]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[53]  Daniela Marghitu,et al.  Multidimensional Computer Literacy Program for Typical and Special Needs Children: An Auburn University Case Study , 2007 .

[54]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[55]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[56]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[57]  P. Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[58]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.

[59]  Gerry V. Dozier,et al.  An evolutionary approach for achieving scalability with general regression neural networks , 2009, Natural Computing.

[60]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[61]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[62]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[63]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[64]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[65]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[66]  Bernhard Sendhoff,et al.  On Test Functions for Evolutionary Multi-objective Optimization , 2004, PPSN.

[67]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[68]  L. Jain,et al.  Evolutionary multiobjective optimization : theoretical advances and applications , 2005 .