Thermodynamic properties of silver–palladium alloys determined by a solid state electrochemical method

Silver–palladium alloys have various industrial applications, such as in hydrogen permeation and hydrogen storage materials. The objective of the present study is to determine experimentally the thermodynamic properties of solid state silver–palladium alloys in low temperatures. Thermodynamic measurements of silver–palladium alloys have been performed over a temperature range of 450–750 K by the electromotive force method with superionic conductor AgI as the solid electrolyte. The activity and partial molar Gibbs energy of silver were obtained for Ag–Pd alloys over the whole composition range, and the thermodynamic properties of palladium were calculated using the Gibbs–Duhem equation. The results show that activities of silver exhibit fairly large negative deviations over most of the composition range, and the activities of palladium are characterized by both negative and positive deviations from the ideal Raoultian behavior. The results also show the minimum integral enthalpy of mixing of Ag–Pd alloys to locate at around 60 at.% Ag.

[1]  Mark A. Rodriguez,et al.  Behavior of Silver and Palladium Mixtures during Heating , 2004 .

[2]  G. B. Olson,et al.  Thermodynamic modeling of the Pd-X(X= Ag, Co, Fe, Ni) systems , 1999 .

[3]  A. Dinsdale SGTE data for pure elements , 1991 .

[4]  Dawei Feng,et al.  Thermodynamic properties of Ag3AuSe2 from 300 to 500 K by a solid state galvanic cell , 2014 .

[5]  R. W. Gurry,et al.  Physical chemistry of metals , 1953 .

[6]  H. Flandorfer,et al.  Enthalpies of mixing of metallic systems relevant for lead-free soldering: Ag–Pd and Ag–Pd–Sn , 2005 .

[7]  R. A. Oriani,et al.  Thermodynamics of ordering alloys—IV heats of formation of some alloys of transition metals☆ , 1962 .

[8]  R. Hultgren,et al.  The thermodynamic properties of silver + palladium alloys , 1969 .

[9]  W. T. Thompson,et al.  The Ag Pd Silver Palladium System , 1988 .

[10]  Dawei Feng,et al.  Thermodynamic stability of AuSe at temperature from (400 to 700) K by a solid state galvanic cell , 2014 .

[11]  J. Sopoušek,et al.  Experimental determination of phase equilibria and reassessment of Ag–Pd system , 2010 .

[12]  S. V. Meschel,et al.  Thermochemistry of some binary alloys of noble metals (Cu, Ag, Au) and transition metals by high temperature direct synthesis calorimetry , 2003 .

[13]  O. J. Kleppa,et al.  High temperature thermodynamics of dilute solutions of hydrogen in palladium–copper alloys , 1979 .

[14]  N. G. Schmahl Die Erleichterung der Reduzierbarkeit von Metallverbindungen durch Legierungsbildung und ihre Berechnung , 1951 .

[15]  Rudolf Ruer Über die Legierungen des Palladiums mit Gold , 1906 .

[16]  Dawei Feng,et al.  Thermodynamic stability of Ag2Se from 350 to 500 K by a solid state galvanic cell , 2013 .

[17]  L. W. Mckeehan,et al.  The Crystal Structure of Silver-Palladium and Silver-Gold Alloys , 1922 .

[18]  K. Myles Thermodynamic properties of solid palladium-silver alloys☆ , 1965 .

[19]  F. E. Hoare,et al.  The low-temperature (2 to 4·2°K) specific heats of palladium-silver alloys , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  Rudolf Ruer Über die Legierungen des Palladiums mit Silber , 1906 .

[21]  O. J. Kleppa,et al.  HIGH-TEMPERATURE THERMODYNAMICS OF THE SOLUTIONS OF HYDROGEN IN PALLADIUM-SILVER ALLOYS , 1979 .

[22]  C. Wagner Thermodynamics of alloys , 1952 .

[23]  F. A. Lewis,et al.  Hydrogen chemical potentials and diffusion coefficients in hydrogen diffusion membranes , 1983, Nature.