A Nonparametric Statistical Technique for Modeling Overland TMI (2A12) Rainfall Retrieval Error

In this letter, we evaluate a nonparametric error model for Tropical Rainfall Measurement Mission (TRMM) passive microwave (PMW) rainfall (2A12) product over coverage in the southern continental United States, and assess the impact of surface soil moisture information on the model’s performance. Reference precipitation was based on high-resolution (5 min/1 km) rainfall fields derived from the NOAA/National Severe Storms Laboratory multiradar multisensor system. The error model was evaluated using a K-fold validation experiment using systematic and random error statistics of the model-adjusted TRMM Microwave Imager rainfall point estimates, and ensemble verification statistics of the corresponding prediction intervals. Results show better performance, particularly in the accuracy of the prediction intervals, when near-surface soil moisture was used as input parameter. The error model can be extended using the TRMM and Global Precipitation Measurement satellite missions’ precipitation radar rainfall and satellite soil moisture data sets to characterize globally the uncertainty of PMW products.

[1]  R. Jeu,et al.  Multisensor historical climatology of satellite‐derived global land surface moisture , 2008 .

[2]  Chuntao Liu,et al.  “Warm Rain” in the Tropics: Seasonal and Regional Distributions Based on 9 yr of TRMM Data , 2009 .

[3]  Seth D Guikema,et al.  Prestorm Estimation of Hurricane Damage to Electric Power Distribution Systems , 2010, Risk analysis : an official publication of the Society for Risk Analysis.

[4]  Emmanouil N. Anagnostou,et al.  Incorporating Surface Soil Moisture Information in Error Modeling of TRMM Passive Microwave Rainfall , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Emmanouil N. Anagnostou,et al.  Regional Differences in Overland Rainfall Estimation from PR-Calibrated TMI Algorithm , 2005 .

[6]  Emmanouil N. Anagnostou,et al.  The Use of TRMM Precipitation Radar Observations in Determining Ground Radar Calibration Biases , 2001 .

[7]  Jane Wright,et al.  Water pressure. , 1996, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[8]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[9]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[10]  J. Gourley,et al.  The Influence of Surface and Precipitation Characteristics on TRMM Microwave Imager Rainfall Retrieval Uncertainty , 2015 .

[11]  Seth D. Guikema,et al.  Forecasting hurricane-induced power outage durations , 2014, Natural Hazards.

[12]  Li Li,et al.  A Physically Based Soil Moisture and Microwave Emissivity Data Set for Global Precipitation Measurement (GPM) Applications , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Barry E. Schwartz,et al.  An Hourly Assimilation–Forecast Cycle: The RUC , 2004 .

[14]  Vincenzo Levizzani,et al.  Estimation of precipitation from space-based platforms , 2008 .

[15]  Ralph Ferraro,et al.  TRMM 2A12 Land Precipitation Product - Status and Future Plans , 2009 .

[16]  Jian Zhang,et al.  Constructing Three-Dimensional Multiple-Radar Reflectivity Mosaics: Examples of Convective Storms and Stratiform Rain Echoes , 2005 .

[17]  Thomas M. Hamill,et al.  Verification of Eta–RSM Short-Range Ensemble Forecasts , 1997 .

[18]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .

[19]  Jian Zhang,et al.  National mosaic and multi-sensor QPE (NMQ) system description, results, and future plans , 2011 .

[20]  H Christopher Frey,et al.  Analysis of coupled model uncertainties in source-to-dose modeling of human exposures to ambient air pollution: A PM(2.5) case study. , 2009, Atmospheric environment.

[21]  Travis M. Smith,et al.  An Automated Technique to Quality Control Radar Reflectivity Data , 2007 .

[22]  Jeff W. Brogden,et al.  Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating Capabilities , 2016 .

[23]  T. Hamill Interpretation of Rank Histograms for Verifying Ensemble Forecasts , 2001 .

[24]  Yang Hong,et al.  Toward a Framework for Systematic Error Modeling of Spaceborne Precipitation Radar with NOAA/NSSL Ground Radar–Based National Mosaic QPE , 2012 .

[25]  Witold F. Krajewski,et al.  Radar hydrology: rainfall estimation. , 2002 .

[26]  Yi Y. Liu,et al.  Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals , 2011 .

[27]  Dong-Bin Shin,et al.  The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors , 2001 .

[28]  J. Gourley,et al.  Evolving Multisensor Precipitation Estimation Methods: Their Impacts on Flow Prediction Using a Distributed Hydrologic Model , 2011 .

[29]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .