Probabilistic multiscale image segmentation by the hyperstack

In the medical community, images from different modalities have found their way to a variety of medical disciplines. Multidimensional images have become indispensable in clinical diagnosis, therapy planning and evaluation. Image segmentation -- dividing an image into meaningful objects -- is a subfield of image processing that is of crucial importance for quantitative analysis and, in the case of 3D images, volume visualization. We present an approach to segmentation of multidimensional images called the hyperstack. This method is based on the scale space theory, where an image is considered at multiple levels of scale (resolution) simultaneously. The original image represents the highest scale (detail information), while succesively low-pass filtering of the image produces the larger scales (global information). By establishing linkages between these levels of scale, the global information can efectively be used to guide the segmentation of the pixels in the original image. In particular, the research has focused on the segmentation of partial volume voxels. It is shown that this leads to an improvement of both quantitative analysis and 3D volume renderings. Furthermore, it has been investigated if the segmentations could be further improved by using nonlinear filtering techniques to generate the scale space. The hyperstack has basically been applied to neurological MR T1 images, but is not restricted to a particular type of image or modality.

[1]  John A. Pearce,et al.  Linear combinations of morphological operators: the midrange, pseudomedian, and LOCO filters , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  Stephen M. Pizer,et al.  A Multiresolution Hierarchical Approach to Image Segmentation Based on Intensity Extrema , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  S. Angenent On the formation of singularities in the curve shortening flow , 1991 .

[4]  Azriel Rosenfeld,et al.  A critical view of pyramid segmentation algorithms , 1990, Pattern Recognit. Lett..

[5]  J. Weickert Scale-Space Properties of Nonlinear Diffusion Filtering with a Diffusion Tensor , 1994 .

[6]  M. Vannier,et al.  Spiral (helical) CT. , 1993, Radiology.

[7]  S. Angenent Parabolic equations for curves on surfaces Part II. Intersections, blow-up and generalized solutions , 1991 .

[8]  U. Tiede,et al.  Surface shading in tomographic volume visualization: a comparative study , 1990, [1990] Proceedings of the First Conference on Visualization in Biomedical Computing.

[9]  E G Eijkman,et al.  Recognition of organs in CT-image sequences: a model guided approach. , 1988, Computers and biomedical research, an international journal.

[10]  A. Aertsen Brain theory : spatio-temporal aspects of brain function , 1993 .

[11]  Alan W. Paeth Median finding on a 3 x 3 grid , 1990 .

[12]  Alexander Toet,et al.  Some Applications of Hierarchical Image Processing Algorithms , 1984 .

[13]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  J. A. Parker,et al.  Comparison of Interpolating Methods for Image Resampling , 1983, IEEE Transactions on Medical Imaging.

[15]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[16]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[17]  Azriel Rosenfeld,et al.  Robustness of image pyramids under structural perturbations , 1988, Comput. Vis. Graph. Image Process..

[18]  Max A. Viergever,et al.  Scale-Space: Its Natural Operators and Differential Invariants , 1991, IPMI.

[19]  S P Raya,et al.  Low-level segmentation of 3-D magnetic resonance brain images-a rule-based system. , 1990, IEEE transactions on medical imaging.

[20]  Gunilla Borgefors,et al.  Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  J. Andrew Bangham,et al.  Scale-space from nonlinear filters , 1995, Proceedings of IEEE International Conference on Computer Vision.

[22]  Azriel Rosenfeld,et al.  Segmentation and Estimation of Image Region Properties through Cooperative Hierarchial Computation , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Benjamin B. Kimia,et al.  Three-dimensional shape representation from curvature dependent surface evolution , 1994, Proceedings of 1st International Conference on Image Processing.

[24]  M A Viergever,et al.  A hyperstack for the segmentation of 3D images. , 1991, Progress in clinical and biological research.

[25]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Richard A. Young,et al.  SIMULATION OF HUMAN RETINAL FUNCTION WITH THE GAUSSIAN DERIVATIVE MODEL. , 1986 .

[27]  Clifford A. Shaffer Fast circle-rectangle intersection checking , 1990 .

[28]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[29]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[30]  R. Young GAUSSIAN DERIVATIVE THEORY OF SPATIAL VISION: ANALYSIS OF CORTICAL CELL RECEPTIVE FIELD LINE-WEIGHTING PROFILES. , 1985 .

[31]  Max A. Viergever,et al.  A complete and irreducible set of local orthogonally invariant features of 2-dimensional images , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[32]  S W Zucker,et al.  Receptive fields and the representation of visual information. , 1986, Human neurobiology.

[33]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[34]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[35]  J. Koenderink,et al.  Visual detection of spatial contrast; Influence of location in the visual field, target extent and illuminance level , 1978, Biological Cybernetics.

[36]  Max A. Viergever,et al.  Comparison of Feature-Based Matching of CT and MR Brain Images , 1995, CVRMed.

[37]  J. Sethian Curvature and the evolution of fronts , 1985 .

[38]  S. Eiho,et al.  Processing of RI-Angiocardiographic Images , 1976 .

[39]  Wido Menhardt Iconic Fuzzy Sets for MR Image Segmentation , 1992 .

[40]  Donald Meagher,et al.  Geometric modeling using octree encoding , 1982, Comput. Graph. Image Process..

[41]  Baba C. Vemuri,et al.  Multi-Resolution Stochastic 3D Shape Models for Image Segmentation , 1993, IPMI.

[42]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[43]  P. Roos,et al.  Reversible compression of medical images , 1991 .

[44]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  C. K. Yuen,et al.  Digital Filters , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[46]  Azriel Rosenfeld,et al.  Pyramid linking is a special case of ISODATA , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[47]  Wido Menhardt Image analysis using iconic fuzzy sets , 1988, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[48]  Petros Maragos,et al.  Evolution equations for continuous-scale morphology , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[49]  Max A. Viergever,et al.  Nonlinear scale-space , 1995, Image Vis. Comput..

[50]  B KimiaBenjamin,et al.  Shapes, shocks, and deformations I , 1995 .

[51]  M.A. Viergever,et al.  Multiresolution segmentation of 3D images by the hyperstack , 1990, [1990] Proceedings of the First Conference on Visualization in Biomedical Computing.

[52]  Claudio Montani,et al.  Spheres-to-voxels conversion , 1990 .

[53]  Max A. Viergever,et al.  Probabilistic Hyperstack Segmentation of MR Brain Data , 1995, CVRMed.

[54]  Azriel Rosenfeld,et al.  The fuzzy geometry of image subsets , 1984, Pattern Recognit. Lett..

[55]  D. Ortendahl,et al.  Segmentation of Magnetic Resonance Images Using Fuzzy Clustering , 1988 .

[56]  Guido Gerig,et al.  Vector-Valued Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.

[57]  Max A. Viergever,et al.  Task-directed evaluation of image segmentation methods , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[58]  Azriel Rosenfeld,et al.  Image Smoothing and Segmentation by Multiresolution Pixel Linking: Further Experiments and Extensions , 1982, IEEE Transactions on Systems, Man, and Cybernetics.

[59]  Max A. Viergever,et al.  Evaluation of Ridge Seeking Operators for Multimodality Medical Image Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Russell M. Mersereau,et al.  Automatic detection of brain contours in MRI data sets. , 1993, IEEE transactions on medical imaging.

[61]  Glynn P. Robinson,et al.  Scale and segmentation of grey-level images using maximum gradient paths , 1991, Image Vis. Comput..

[62]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[63]  Bjarne Stroustrup,et al.  The C++ Programming Language, Second Edition , 1991 .

[64]  Max A. Viergever,et al.  A methodology for the validation of image segmentation methods , 1992, [1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems.

[65]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[66]  Hendrik James Antonisse Image segmentation in pyramids , 1982, Comput. Graph. Image Process..

[67]  David N. Kennedy,et al.  Segmentation of Magnetic Resonance Brain Images Using Analog Constraint Satisfaction Neural Networrks , 1993, IPMI.

[68]  J. H. Peters,et al.  Reversible intraframe compression of medical images. , 1988, IEEE transactions on medical imaging.

[69]  John A. Pearce,et al.  Some properties of the two-dimensional pseudomedian filter , 1991, Electronic Imaging.

[70]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  John A. Pearce,et al.  Value-and-criterion filters: a new filter structure based on morphological opening and closing , 1993, Electronic Imaging.

[72]  Alexander Toet,et al.  PYRAMID SEGMENTATION OF MEDICAL 3D IMAGES. , 1984 .

[73]  Bernard Gibaud,et al.  Three-dimensional display of MRI data in neurosurgery: segmentation and rendering aspects , 1991, Medical Imaging.

[74]  Kaleem Siddiqi,et al.  Geometric heat equation and nonlinear diffusion of shapes and images , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[75]  Ross T. Whitaker,et al.  Algorithms for implicit deformable models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[76]  Luc Florack,et al.  Differential structure of images: accuracy of representation , 1994, Proceedings of 1st International Conference on Image Processing.

[77]  Max A. Viergever,et al.  Probabilistic multiscale image segmentation: set-up and first results (Proceedings Only) , 1992, Other Conferences.

[78]  Jan J. Koenderink,et al.  Spatial Derivatives and the Propagation of Noise in Gaussian Scale Space , 1993, J. Vis. Commun. Image Represent..

[79]  Max A. Viergever,et al.  A Multiscale Approach to Image Segmentation Using Kohonen Networks , 1993, IPMI.

[80]  Marc Levoy,et al.  Rendering of Surfaces from Volume Data , 1988 .

[81]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[82]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[83]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[84]  W. Kalender,et al.  Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. , 1990, Radiology.

[85]  James Arvo A simple method for box-sphere intersection testing , 1990 .

[86]  Max A. Viergever,et al.  Probabilistic segmentation of partial volume voxels , 1994, Pattern Recognit. Lett..

[87]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[88]  M. Gage Curve shortening makes convex curves circular , 1984 .

[89]  G. Sapiro,et al.  On affine plane curve evolution , 1994 .

[90]  Tony Lindeberg,et al.  Discrete Scale-Space Theory and the Scale-Space Primal Sketch , 1991 .

[91]  James Coplien,et al.  Advanced C++ Programming Styles and Idioms , 1991, Proceedings. Technology of Object-Oriented Languages and Systems, TOOLS 25 (Cat. No.97TB100239).

[92]  William E. Lorensen,et al.  Object-Oriented Modeling and Design , 1991, TOOLS.

[93]  Walter G. Kropatsch,et al.  A pyramid that grows by powers of 2 , 1985, Pattern Recognit. Lett..

[94]  Alan Liu,et al.  The multiscale medial axis and its applications in image registration , 1994, Pattern Recognit. Lett..

[95]  W. Kropatsch Preserving contours in dual pyramids , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[96]  Stephen M. Pizer,et al.  Toward Interactive Object Definition in 3D Scalar Images , 1990 .

[97]  Herbert Schildt,et al.  C, the complete reference , 1987 .

[98]  Max A. Viergever,et al.  Blurring strategies for image segmentation using a multiscale linking model , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[99]  Guillermo Sapiro,et al.  Affine invariant scale-space , 1993, International Journal of Computer Vision.

[100]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[101]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[102]  Petros Maragos,et al.  Tutorial on advances in morphological image processing and analysis (Invited Paper) , 1987 .