Fast Computation of Posterior Mode in Multi-Level Hierarchical Models

Multi-level hierarchical models provide an attractive framework for incorporating correlations induced in a response variable that is organized hierarchically. Model fitting is challenging, especially for a hierarchy with a large number of nodes. We provide a novel algorithm based on a multi-scale Kalman filter that is both scalable and easy to implement. For Gaussian response, we show our method provides the maximum a-posteriori (MAP) parameter estimates; for non-Gaussian response, parameter estimation is performed through a Laplace approximation. However, the Laplace approximation provides biased parameter estimates that is corrected through a parametric bootstrap procedure. We illustrate through simulation studies and analyses of real world data sets in health care and online advertising.