Fast Computation of Posterior Mode in Multi-Level Hierarchical Models
暂无分享,去创建一个
[1] Michael I. Jordan,et al. Bayesian parameter estimation via variational methods , 2000, Stat. Comput..
[2] N. Goldman,et al. Improved estimation procedures for multilevel models with binary response: a case‐study , 2001 .
[3] S. Raudenbush,et al. Maximum Likelihood for Generalized Linear Models with Nested Random Effects via High-Order, Multivariate Laplace Approximation , 2000 .
[4] Andrew Gelman,et al. Data Analysis Using Regression and Multilevel/Hierarchical Models: Single-level regression , 2006 .
[5] D. Bates,et al. Mixed-Effects Models in S and S-PLUS , 2001 .
[6] A. Kuk. Asymptotically Unbiased Estimation in Generalized Linear Models with Random Effects , 1995 .
[7] P. McCullagh,et al. Generalized Linear Models , 1972, Predictive Analytics.
[8] A. Gelfand,et al. Identifiability, Improper Priors, and Gibbs Sampling for Generalized Linear Models , 1999 .
[9] Andrei Z. Broder,et al. Estimating rates of rare events at multiple resolutions , 2007, KDD '07.
[10] K. C. Chou,et al. Multiscale systems, Kalman filters, and Riccati equations , 1994, IEEE Trans. Autom. Control..
[11] Noreen Goldman,et al. An assessment of estimation procedures for multilevel models with binary responses , 1995 .
[12] John A. Nelder,et al. Generalized linear models. 2nd ed. , 1993 .