Numerical Simulation of the Two-Hydrodynamic Film Thickness

We investigate, from a numerical point of view, the coefficients identification problem, for the Elrod–Adams model of cavitation, in the frame of the hydrodynamic lubrication. We relax the control problem, and propose a relaxed augmented Lagrangian algorithm, with a given loop length. Some numerical results are given.

[1]  Optimal Control of the Obstacle Problem with State Constraints , 1998 .

[2]  J. Puel,et al.  Optimal control in some variational inequalities , 1984 .

[3]  C. Marle,et al.  Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière , 1996 .

[4]  Maïtine Bergounioux Optimal Control of Problems Governed by Abstract Elliptic Variational Inequalities with State Constraints , 1998 .

[5]  An application of the control by coefficients in a variational inequality for hydrodynamic lubrication , 2000 .

[6]  M. Chambat,et al.  Characteristics method for the formulation and computation of a free boundary cavitation problem , 1998 .

[7]  Optimal Control of Abstract Elliptic Variational Inequalities with State Constraints , 1998 .

[8]  R. Glowinski,et al.  Méthodes de Lagrangien augmenté : applications à la résolution numérique de problèmes aux limites , 1982 .

[9]  L. Evans Measure theory and fine properties of functions , 1992 .

[10]  F. Patrone,et al.  On the Optimal Control of Variational Inequalities , 1975, Optimization Techniques.

[11]  Xue-Cheng Tai,et al.  Identification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization , 2003, SIAM J. Sci. Comput..

[12]  T. Chan,et al.  Augmented Lagrangian and total variation methods for recovering discontinuous coefficients from elliptic equations , 1997 .

[13]  M. Godet,et al.  Cavitation and related phenomena in lubrication : proceedings of the 1st Leeds-Lyon Symposium on Tribology held in the Institute of Tribology, Department of Mechanical Engineering, the University of Leeds, England, September 1974 , 1975 .

[14]  Michael Frazier,et al.  Studies in Advanced Mathematics , 2004 .

[15]  G. Bayada,et al.  Une méthode du type caractéristique pour la résolution d'un problème de lubrification hydrodynamique en régime transitoire , 1991 .

[16]  V. Barbu Optimal control of variational inequalities , 1984 .

[17]  Maïtine Bergounioux,et al.  Optimal control of an obstacle problem , 1997 .