A Student Model of Technical Japanese Reading Proficiency for an Intelligent Tutoring System

This article presents the development of a student model that is used in a Japanese language intelligent tutoring system to assess pupils' proficiency at reading technical Japanese. A computer-assisted knowledge acquisition system is designed to generate a domain knowledge base for a Japanese language intelligent tutoring system. The domain knowledge represents a model of the expertise that a native English speaker must acquire in order to be proficient at reading technical Japanese. The algorithms described here are able to generate a set of grammatical transformation rules that clarify changes of syntactic structures between a Japanese text and its corresponding English translation, use them to assess a student's proficiency, and then appropriately individualize the student's instructions.

[1]  Noriko Nagata,et al.  An Effective Application of Natural Language Processing in Second Language Instruction , 2013, CALICO Journal.

[2]  Ruth H. Sanders,et al.  Syntactic parsing: A survey , 1989 .

[3]  Masaru Tomita,et al.  Efficient parsing for natural language , 1985 .

[4]  Merryanna L. Swartz,et al.  Issues for Tutoring Knowledge in Foreign Language Intelligent Tutoring Systems , 1992 .

[5]  Michael B. Twidale,et al.  Knowledge Acquisition for Intelligent Tutoring Systems , 1992 .

[6]  Jeffrey M. Bradshaw,et al.  Expertise Transfer and Complex Problems: Using AQUINAS as a Knowledge-Acquisition Workbench for Knowledge-Based Systems , 1993, Int. J. Man Mach. Stud..

[7]  Heinz Mandl,et al.  Learning Issues for Intelligent Tutoring Systems , 1988, Cognitive Science.

[8]  Christoph M. Hoffmann,et al.  Pattern Matching in Trees , 1982, JACM.

[9]  Ingo Ruhmann,et al.  KRITON: A Knowledge-Acquisition Tool for Expert Systems , 1987, Int. J. Man Mach. Stud..

[10]  Jeff Rickel,et al.  Intelligent computer-aided instruction: a survey organized around system components , 1989, IEEE Trans. Syst. Man Cybern..

[11]  Michael J. Fischer,et al.  The String-to-String Correction Problem , 1974, JACM.

[12]  Judith D. Wilson,et al.  Artificial Intelligence and Tutoring Systems , 1990 .

[13]  Martha C. Polson,et al.  Foundations of intelligent tutoring systems , 1988 .

[14]  Camilla Schwind,et al.  An Intelligent Language Tutoring System , 1990, Int. J. Man Mach. Stud..

[15]  Anthony M. Maciejewski,et al.  The Nihongo Tutorial System: An Intelligent Tutoring System for Technical Japanese Language Instruction. , 2013 .

[16]  Edward E. Daub,et al.  Comprehending technical Japanese , 1976 .

[17]  E. Daub,et al.  Comprehending Technical Japanese , 1976 .

[18]  Anthony A. Maciejewski,et al.  A student model of Katakana reading proficiency for a Japanese language intelligent tutoring system , 1991, Conference Proceedings 1991 IEEE International Conference on Systems, Man, and Cybernetics.

[19]  均 井佐原 Analysis and Semantic Representation in CONTRAST--A Context-based Machine Translation System (自然言語対話システムに関する研究 ) , 1993 .

[20]  Jie-Chi Yang,et al.  Error Analysis in Japanese Writing and Its Implementation in a Computer Assisted Language Learning System on the World Wide Web , 2013 .

[21]  Noriko Nagata,et al.  Computer vs. Workbook Instruction in Second Language Acquisition , 2013, CALICO Journal.

[22]  Ok-choon Park,et al.  Intelligent CAI: Old wine in new bottles, or a new vintage? , 1987 .