Entropy Stable Scheme on Two-Dimensional Unstructured Grids for Euler Equations

We propose an entropy stable high-resolution finite volume scheme to approximate systems of two-dimensional symmetrizable conservation laws on unstructured grids. In particular we consider Euler equations governing compressible flows. The scheme is constructed using a combination of entropy conservative fluxes and entropy-stable numerical dissipation operators. High resolution is achieved based on a linear reconstruction procedure satisfying a suitable sign property that helps to maintain entropy stability. The proposed scheme is demonstrated to robustly approximate complex flow features by a series of benchmark numerical experiments. AMS subject classifications: 65M08, 35L65, 35Q31

[1]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[2]  D. Kröner,et al.  Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions , 1994 .

[3]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[4]  Dimitri J. Mavriplis,et al.  Adaptive mesh generation for viscous flows using delaunay triangulation , 1990 .

[5]  Philippe G. LeFloch,et al.  Fully Discrete, Entropy Conservative Schemes of ArbitraryOrder , 2002, SIAM J. Numer. Anal..

[6]  Aaron Katz,et al.  An Efficient Correction Method to Obtain a Formally Third-Order Accurate Flow Solver for Node-Centered Unstructured Grids , 2012, J. Sci. Comput..

[7]  Bruno Stoufflet,et al.  TVD Schemes to Compute Compressible Viscous Flows on Unstructured Meshes , 1989 .

[8]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[9]  Nonlinear hyperbolic problems : theoretical, applied, and computational aspects : proceedings of the Fourth International Conference on Hyperbolic Problems, Taormina, Italy, April 3 to 8, 1992 , 1993 .

[10]  Rolf Jeltsch,et al.  Nonlinear hyperbolic equations : theory, computation methods, and applications : proceedings of the Second International Conference on Nonlinear Hyperbolic Problems, Aachen, FRG, March 14 to 18, 1988 , 1989 .

[11]  Jacques Periaux,et al.  2-D and 3-D Euler computations with finite element methods in aerodynamics , 1987 .

[12]  Jean-Marc Moschetta,et al.  Shock wave instability and the carbuncle phenomenon: same intrinsic origin? , 2000, Journal of Fluid Mechanics.

[13]  Eitan Tadmor,et al.  Energy Preserving and Energy Stable Schemes for the Shallow Water Equations , 2009 .

[14]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[15]  Eitan Tadmor,et al.  Construction of Approximate Entropy Measure-Valued Solutions for Hyperbolic Systems of Conservation Laws , 2014, Found. Comput. Math..

[16]  Philip L. Roe,et al.  On carbuncles and other excrescences , 2005 .

[17]  Antony Jameson,et al.  Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes , 2008, J. Sci. Comput..

[18]  F. Angrand,et al.  Flux Formulation using a Fully 2D Approximate Roe Riemann Solver , 1993 .

[19]  Praveen Chandrashekar,et al.  Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations , 2012, ArXiv.

[20]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[21]  Jean-Antoine Désidéri,et al.  Compressible flow solvers using unstructured grids , 1992 .

[22]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[23]  C. Hirsch,et al.  Introduction to “Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method” , 1997 .

[24]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[25]  Eitan Tadmor,et al.  Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws , 2012, SIAM J. Numer. Anal..

[26]  Alain Dervieux,et al.  Non-Oscillatory Schemes for Multidimensional Euler Calculations with Unstructured Grids , 1989 .

[27]  Benoît Perthame,et al.  A variant of Van Leer's method for multidimensional systems of conservation laws , 1994 .

[28]  Eitan Tadmor,et al.  Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes , 1984 .

[29]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[30]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[31]  Jiri Blazek,et al.  Computational Fluid Dynamics: Principles and Applications , 2001 .

[32]  David Lee Whitaker Two-dimensional Euler computations on a triangular mesh using an upwind, finite-volume scheme , 1988 .

[33]  S. Osher,et al.  Triangle based adaptive stencils for the solution of hyperbolic conservation laws , 1992 .

[34]  John Van Rosendale,et al.  Upwind and high-resolution schemes , 1997 .

[35]  D. Kröner,et al.  Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions , 1995 .

[36]  V. Venkatakrishnan On the accuracy of limiters and convergence to steady state solutions , 1993 .

[37]  Timothy J. Barth,et al.  Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.

[38]  M. Mock,et al.  Systems of conservation laws of mixed type , 1980 .

[39]  Eitan Tadmor,et al.  Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[40]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[41]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[42]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[43]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[44]  A. Jameson,et al.  Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh , 1985 .

[45]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[46]  W. K. Anderson,et al.  A grid generation and flow solution method for the Euler equations on unstructured grids , 1994 .

[47]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[48]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[49]  A. Madrane,et al.  ENTROPY CONSERVATIVE AND ENTROPY STABLE FINITE VOLUME SCHEMES FOR MULTI-DIMENSIONAL CONSERVATION LAWS ON UNSTRUCTURED MESHES , 2011 .

[50]  Eitan Tadmor,et al.  ENO Reconstruction and ENO Interpolation Are Stable , 2011, Found. Comput. Math..

[51]  P. Colella A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .

[52]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[53]  G Vijayasundaram,et al.  Transonic flow simulations using an upstream centered scheme of Godunov in finite elements , 1986 .

[54]  Philip L. Roe,et al.  A multidimensional generalization of Roe's flux difference splitter for the euler equations , 1993 .