New Upper Bounds for Neighbor Searching

This paper investigates the circular retrieval problem and the k-nearest neighbor problem, for sets of n points in the Euclidean plane. Two similar data structures each solve both problems. A deterministic structure uses space O(n(log n log log n)2), and a probabilistic structure uses space O(n log2 n). For both problems, these two structures answer a query that returns k points in O(k + log n) time.

[1]  D. T. Lee,et al.  On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.

[2]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[3]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[4]  Hermann A. Maurer,et al.  A Note on Euclidean Near Neighbor Searching in the Plane , 1979, Inf. Process. Lett..

[5]  Bernard Chazelle Filtering Search: A New Approach to Query-Answering , 1983, FOCS.

[6]  F. Frances Yao,et al.  A 3-space partition and its applications , 1983, STOC.

[7]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[8]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[9]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.