Optimizing video search reranking via minimum incremental information loss
暂无分享,去创建一个
[1] N. Meyers,et al. H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.
[2] Rong Yan,et al. Multimedia Search with Pseudo-relevance Feedback , 2003, CIVR.
[3] Shih-Fu Chang,et al. Video search reranking through random walk over document-level context graph , 2007, ACM Multimedia.
[4] Meng Wang,et al. MSRA-USTC-SJTU at TRECVID 2007: High-Level Feature Extraction and Search , 2007, TRECVID.
[5] Paul Over,et al. Evaluation campaigns and TRECVid , 2006, MIR '06.
[6] Martin Vetterli,et al. Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..
[7] Shih-Fu Chang,et al. A reranking approach for context-based concept fusion in video indexing and retrieval , 2007, CIVR '07.
[8] Shih-Fu Chang,et al. Columbia University’s Baseline Detectors for 374 LSCOM Semantic Visual Concepts , 2007 .
[9] John R. Smith,et al. Data Modeling Strategies for Imbalanced Learning in Visual Search , 2007, 2007 IEEE International Conference on Multimedia and Expo.
[10] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[11] 编程语言. Query by Example , 2010, Encyclopedia of Database Systems.
[12] K. Sparck Jones,et al. Simple, proven approaches to text retrieval , 1994 .
[13] John Adcock,et al. Interactive Video Search Using Multilevel Indexing , 2005, CIVR.
[14] Shih-Fu Chang,et al. Video search reranking via information bottleneck principle , 2006, MM '06.
[15] Tao Mei,et al. Learning to video search rerank via pseudo preference feedback , 2008, 2008 IEEE International Conference on Multimedia and Expo.
[16] Filip Radlinski,et al. A support vector method for optimizing average precision , 2007, SIGIR.