Exciton annihilation as a probe of the light-harvesting antenna transition into the photoprotective mode

[1]  Alessandro Marin,et al.  Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield-Förster picture. , 2011, Physical chemistry chemical physics : PCCP.

[2]  Tjaart P. J. Krüger,et al.  Fluorescence intermittency from the main plant light-harvesting complex: sensitivity to the local environment. , 2011, The journal of physical chemistry. B.

[3]  R. van Grondelle,et al.  Physical origins and models of energy transfer in photosynthetic light-harvesting. , 2010, Physical chemistry chemical physics : PCCP.

[4]  Tjaart P. J. Krüger,et al.  Fluorescence spectral dynamics of single LHCII trimers. , 2010, Biophysical journal.

[5]  A. Holzwarth,et al.  Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  A. Ruban,et al.  Modeling of exciton quenching in photosystem II. , 2009, Physical chemistry chemical physics : PCCP.

[7]  F. Bittner,et al.  On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls , 2009, Proceedings of the National Academy of Sciences.

[8]  R. Grondelle,et al.  Exciton migration and fluorescence quenching in LHCII aggregates: Target analysis using a simple nonlinear annihilation scheme , 2009 .

[9]  Matthew P. Johnson,et al.  Induction of Efficient Energy Dissipation in the Isolated Light-harvesting Complex of Photosystem II in the Absence of Protein Aggregation* , 2008, Journal of Biological Chemistry.

[10]  J. Kennis,et al.  Identification of a mechanism of photoprotective energy dissipation in higher plants , 2007, Nature.

[11]  A. van Hoek,et al.  Aggregation of Light‐Harvesting Complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes , 2007, FEBS letters.

[12]  A. van Hoek,et al.  Equilibrium between quenched and nonquenched conformations of the major plant light-harvesting complex studied with high-pressure time-resolved fluorescence. , 2007, The journal of physical chemistry. B.

[13]  Zhenfeng Liu,et al.  Two lutein molecules in LHCII have different conformations and functions: Insights into the molecular mechanism of thermal dissipation in plants. , 2007, Biochemical and biophysical research communications.

[14]  A. van Hoek,et al.  Excitation energy transfer and charge separation in photosystem II membranes revisited. , 2006, Biophysical journal.

[15]  Rienk van Grondelle,et al.  Energy transfer in photosynthesis: experimental insights and quantitative models. , 2006, Physical chemistry chemical physics : PCCP.

[16]  Bruno Robert,et al.  Molecular basis of photoprotection and control of photosynthetic light-harvesting , 2005, Nature.

[17]  R. van Grondelle,et al.  Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Angstrom crystal structure. , 2005, The journal of physical chemistry. B.

[18]  W. Kühlbrandt,et al.  Mechanisms of photoprotection and nonphotochemical quenching in pea light‐harvesting complex at 2.5 Å resolution , 2005, The EMBO journal.

[19]  R. Grondelle,et al.  Energy-transfer dynamics in the LHCII complex of higher plants: Modified redfield approach , 2004 .

[20]  Zhenfeng Liu,et al.  Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution , 2004, Nature.

[21]  I. Moya,et al.  Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. , 2001, Biochemistry.

[22]  R. van Grondelle,et al.  Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII. , 2001, Biophysical journal.

[23]  M. G. Müller,et al.  Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHCII) of higher plants. I. Femtosecond transient absorption measurements. , 2001, Biophysical journal.

[24]  Stefan Jansson,et al.  A pigment-binding protein essential for regulation of photosynthetic light harvesting , 2000, Nature.

[25]  C. Gradinaru,et al.  Energy transfer in LHCII monomers at 77K studied by sub-picosecond transient absorption spectroscopy. , 1997, Biochemistry.

[26]  J. P. Connelly,et al.  Ultrafast Spectroscopy of Trimeric Light-Harvesting Complex II from Higher Plants , 1997 .

[27]  J. P. Connelly,et al.  Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II. , 1997, Biochemistry.

[28]  R. Grondelle,et al.  Probing the many energy-transfer processes in the photosynthetic light-harvesting complex II at 77 K using energy-selective sub-picosecond transient absorption spectroscopy , 1996 .

[29]  E. Peterman,et al.  Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. , 1995, Biophysical journal.

[30]  G. Wiederrecht,et al.  Femtosecond transient absorption spectroscopy on the light-harvesting Chl a/b protein complex of Photosystem II at room temperature and 12 K , 1995 .

[31]  Yoshinori Fujiyoshi,et al.  Atomic model of plant light-harvesting complex by electron crystallography , 1994, Nature.

[32]  A. Young,et al.  The Effects of Illumination on the Xanthophyll Composition of the Photosystem II Light-Harvesting Complexes of Spinach Thylakoid Membranes , 1994, Plant physiology.

[33]  A. Ruban,et al.  Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. II. The relationship between LHCII aggregation in vitro and qE in isolated thylakoids , 1992 .

[34]  K. Winter,et al.  Photoinhibition and zeaxanthin formation in intact leaves : a possible role of the xanthophyll cycle in the dissipation of excess light energy. , 1987, Plant physiology.

[35]  J. Briantais,et al.  A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. , 1979, Biochimica et biophysica acta.

[36]  A. Crofts,et al.  Energy-dependent quenching of chlorophyll alpha fluorescence in isolated chloroplasts. , 1970, European journal of biochemistry.

[37]  Matthew P. Johnson,et al.  The photoprotective molecular switch in the photosystem II antenna. , 2012, Biochimica et biophysica acta.

[38]  G. Scholes,et al.  Energy transfer in light-harvesting complexes LHCII and CP29 of spinach studied with three pulse echo peak shift and transient grating. , 2003, Biophysical journal.