A Matlab toolbox for optimization over symmetric cones

SeDuMi is an add-on for MATLAB, which lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity. This paper describes how to work with this toolbox.

[1]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[2]  Sanjay Mehrotra,et al.  Finding an interior point in the optimal face of linear programs , 1993, Math. Program..

[3]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[4]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[5]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[6]  Renato D. C. Monteiro,et al.  A general parametric analysis approach and its implication to sensitivity analysis in interior point methods , 1996, Math. Program..

[7]  Shuzhong Zhang,et al.  Duality and Self-Duality for Conic Convex Programming , 1996 .

[8]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[9]  Laurent El Ghaoui,et al.  Multiobjective robust control toolbox for LMI-based control , 1997 .

[10]  Shuzhong Zhang,et al.  Duality Results for Conic Convex Programming , 1997 .

[11]  Masakazu Kojima,et al.  Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..

[12]  Shuzhong Zhang,et al.  On a Wide Region of Centers and Primal-Dual Interior Point Algorithms for Linear Programming , 1997, Math. Oper. Res..

[13]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[14]  Michael J. Todd,et al.  Approximate Farkas lemmas and stopping rules for iterative infeasible-point algorithms for linear programming , 1998, Math. Program..

[15]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.

[16]  Yin Zhang,et al.  Solving large-scale linear programs by interior-point methods under the Matlab ∗ Environment † , 1998 .

[17]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[18]  Nathan W. Brixius,et al.  Sdpha: a Matlab implementation of homogeneous interior-point algorithms for semidefinite programming , 1999 .

[19]  D. Goldfarb,et al.  On parametric semidefinite programming , 1999 .

[20]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[21]  Hui Hu,et al.  Computable Error Bounds for Semidefinite Programming , 1999, J. Glob. Optim..