Definition of the feasible solution set in multicriteria optimization problems with continuous, discrete, and mixed design variables

Abstract Engineering optimization problems are multicriteria with continuous, discrete, and mixed design variables. Correct definition of the feasible solution set is of fundamental importance in these problems. It is quite difficult for the expert to define this set. For this reason, the results of searching for optimal solutions frequently have no practical meaning. Furthermore, correct definition of this set makes it possible to significantly reduce the time of searching for optimal solutions. This paper describes construction of the feasible solution set with continuous, discrete, and mixed design variables on the basis of Parameter Space Investigation (PSI) method.

[1]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[2]  Kok Lay Teo,et al.  Numerical Solution of Optimal Control Problems with Discrete-Valued System Parameters , 2002, J. Glob. Optim..

[3]  Ilya M. Sobol,et al.  A Primer for the Monte Carlo Method , 1994 .

[4]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[5]  Roman B. Statnikov,et al.  Multicriteria Analysis in Engineering , 2002 .

[6]  Roman B. Statnikov,et al.  Multicriteria Optimization and Engineering , 1995 .

[7]  Shalabh Bhatnagar,et al.  A Discrete Parameter Stochastic Approximation Algorithm for Simulation Optimization , 2005, Simul..

[8]  Panos Y. Papalambros,et al.  Reliability Optimization With Mixed Continuous-Discrete Random Variables and , 2007 .

[9]  P. Slovic The Construction of Preference , 1995 .

[10]  Alex Bordetsky,et al.  Multicriteria analysis tools in real-life problems , 2006, Comput. Math. Appl..

[11]  P. Hajela,et al.  GENETIC ALGORITHMS IN OPTIMIZATION PROBLEMS WITH DISCRETE AND INTEGER DESIGN VARIABLES , 1992 .

[12]  E. Hinton,et al.  Optimization of trusses using genetic algorithms for discrete and continuous variables , 1999 .

[13]  D. Yan,et al.  Stochastic discrete optimization , 1992 .

[14]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[15]  R. B. Statnikov,et al.  Use of Pτ-nets for the approximation of the Edgeworth-Pareto set in multicriteria optimization , 1996 .