ENPDA: an evolutionary structure-based de novo peptide design algorithm

SummaryOne of the goals of computational chemists is to automate the de novo design of bioactive molecules. Despite significant advances in computational approaches to ligand design and binding energy evaluation, novel procedures for ligand design are required. Evolutionary computation provides a new approach to this design endeavor. We propose an evolutionary tool for de novo peptide design, based on the evaluation of energies for peptide binding to a user-defined protein surface patch. Special emphasis has been placed on the evaluation of the proposed peptides, leading to two different evaluation heuristics. The software developed was successfully tested on the design of ligands for the proteins prolyl oligopeptidase, p53, and DNA gyrase.

[1]  Vasso Apostolopoulos,et al.  Structural Comparison of Allogeneic and Syngeneic T Cell Receptor–Peptide-Major Histocompatibility Complex Complexes , 2002, The Journal of experimental medicine.

[2]  Shail Patel,et al.  Patenting evolved batericidal peptides , 2001 .

[3]  W. Howe,et al.  Computer design of bioactive molecules: A method for receptor‐based de novo ligand design , 1991, Proteins.

[4]  J. Irwin,et al.  Lead discovery using molecular docking. , 2002, Current opinion in chemical biology.

[5]  Xavier Llorà,et al.  Development of a Genetic Algorithm to Design and Identify Peptides that can Cross the Blood-Brain Barrier , 2003 .

[6]  G. Marius Clore,et al.  Refined solution structure of the oligomerization domain of the tumour suppressor p53 , 1995, Nature Structural Biology.

[7]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[8]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[9]  Petra Schneider,et al.  De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks , 2000, J. Comput. Aided Mol. Des..

[10]  R. Kolter,et al.  The maturation pathway of microcin B17, a peptide inhibitor of DNA gyrase , 1993, Molecular microbiology.

[11]  László Polgár,et al.  Prolyl Oligopeptidase An Unusual β-Propeller Domain Regulates Proteolysis , 1998, Cell.

[12]  A Caflisch,et al.  Computational ligand design. , 1999, Combinatorial chemistry & high throughput screening.

[13]  H Kubinyi,et al.  Chance favors the prepared mind--from serendipity to rational drug design. , 1999, Journal of receptor and signal transduction research.

[14]  Valerie J. Gillet,et al.  SPROUT: Recent developments in the de novo design of molecules , 1994, J. Chem. Inf. Comput. Sci..

[15]  Irwin D. Kuntz,et al.  A genetic algorithm for structure-based de novo design , 2001, J. Comput. Aided Mol. Des..

[16]  Michael Thormann,et al.  Massive docking of flexible ligands using environmental niches in parallelized genetic algorithms , 2001, J. Comput. Chem..

[17]  I. Kuntz,et al.  Inclusion of Solvation in Ligand Binding Free Energy Calculations Using the Generalized-Born Model , 1999 .

[18]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[19]  C. Hernández-Chico,et al.  The peptide antibiotic microcin B17 induces double‐strand cleavage of DNA mediated by E. coli DNA gyrase. , 1991, The EMBO journal.

[20]  Edward P. Jaeger,et al.  Application of Genetic Algorithms to Combinatorial Synthesis: A Computational Approach to Lead Identification and Lead Optimization†,∇ , 1996 .

[21]  R. Mentlein,et al.  Proline residues in the maturation and degradation of peptide hormones and neuropeptides , 1988, FEBS letters.

[22]  Hans-Joachim Böhm,et al.  Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs , 1998, J. Comput. Aided Mol. Des..

[23]  Nicolas Majeux,et al.  Structure‐based ligand design by a build‐up approach and genetic algorithm search in conformational space , 2001, J. Comput. Chem..

[24]  Geoffrey Lee Surfactants and Polymers in Drug Delivery , 2004 .

[25]  Klaus Gubernator,et al.  Optimization of the Biological Activity of Combinatorial Compound Libraries by a Genetic Algorithm , 1995 .

[26]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[27]  Claude Granier,et al.  Synthesis and NMR structure of p41icf, a potent inhibitor of human cathepsin L. , 2003, Journal of the American Chemical Society.

[28]  R. Pioli,et al.  Higher serum prolyl endopeptidase activity in patients with post-traumatic stress disorder. , 1999, Journal of affective disorders.

[29]  Clemencia Pinilla,et al.  Advances in the use of synthetic combinatorial chemistry: Mixture-based libraries , 2003, Nature Medicine.

[30]  Ernest Giralt,et al.  Letter to the Editor: 1H(N), 15N, 13CO, 13Cα, 13Cβ assignment and secondary structure of a 20 kDa α-l-fucosidase from pea using TROSY , 2002 .

[31]  Ajay,et al.  Can we learn to distinguish between "drug-like" and "nondrug-like" molecules? , 1998, Journal of medicinal chemistry.

[32]  Celia M. Henry STRUCTURE-BASED DRUG DESIGN , 2001 .

[33]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[34]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[35]  Marc Martinell Pedemonte Disseny, síntesi i estudi de lligands peptídics capaços de reconèixer la superfície de la P53 , 2004 .

[36]  H J Böhm,et al.  Computational tools for structure-based ligand design. , 1996, Progress in biophysics and molecular biology.

[37]  Ronald A. Howard,et al.  Readings on the Principles and Applications of Decision Analysis , 1989 .

[38]  David Corne,et al.  Evolutionary Computation In Bioinformatics , 2003 .

[39]  S. Jones,et al.  Analysis of protein-protein interaction sites using surface patches. , 1997, Journal of molecular biology.

[40]  S. Vajda,et al.  Protein-protein docking: is the glass half-full or half-empty? , 2004, Trends in biotechnology.

[41]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[42]  Barry Robson,et al.  PRO_LIGAND: An approach to de novo molecular design. 4. Application to the design of peptides , 1995, J. Comput. Aided Mol. Des..

[43]  Ernest Giralt,et al.  A tetraguanidinium ligand binds to the surface of the tetramerization domain of protein P53. , 2004, Angewandte Chemie.

[44]  P. Chène,et al.  The role of tetramerization in p53 function , 2001, Oncogene.

[45]  J. Calabrese,et al.  Alterations in plasma prolyl endopeptidase activity in depression, mania, and schizophrenia: effects of antidepressants, mood stabilizers, and antipsychotic drugs , 1995, Psychiatry Research.

[46]  Ernest Giralt,et al.  D-Amino acids in protein de novo design. II. Protein-diastereomerism versus protein-enantiomerism , 1997, Letters in Peptide Science.

[47]  Albert Loffet,et al.  Peptides as Drugs: Is There a Market? , 2002, Journal of peptide science : an official publication of the European Peptide Society.

[48]  Dominique Douguet,et al.  A genetic algorithm for the automated generation of small organic molecules: Drug design using an evolutionary algorithm , 2000, J. Comput. Aided Mol. Des..

[49]  Luhua Lai,et al.  LigBuilder: A Multi-Purpose Program for Structure-Based Drug Design , 2000 .

[50]  G. Schneider,et al.  Peptide design by artificial neural networks and computer-based evolutionary search. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[52]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .

[53]  Judea Pearl,et al.  Chapter 2 – BAYESIAN INFERENCE , 1988 .

[54]  Fumiyoshi Yamashita,et al.  Quantitative structure/property relationship analysis of Caco-2 permeability using a genetic algorithm-based partial least squares method. , 2002, Journal of pharmaceutical sciences.

[55]  Andreas Schwienhorst,et al.  Genetic algorithm for the design of molecules with desired properties , 2002, J. Comput. Aided Mol. Des..

[56]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[57]  H. Rammensee,et al.  Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules , 1991, Nature.