Characterising Concepts of Interest Leveraging Linked Data and the Social Web

Extracting and representing user interests on the Social Web is becoming an essential part of the Web for personalisation and recommendations. Such personalisation is required in order to provide an adaptive Web to users, where content fits their preferences, background and current interests, making the Web more social and relevant. Current techniques analyse user activities on social media systems and collect structured or unstructured sets of entities representing users' interests. These sets of entities, or user profiles of interest, are often missing the semantics of the entities in terms of: (i) popularity and temporal dynamics of the interests on the Social Web and (ii) abstractness of the entities in the real world. State of the art techniques to compute these values are using specific knowledge bases or taxonomies and need to analyse the dynamics of the entities over a period of time. Hence, we propose a real-time, computationally inexpensive, domain independent model for concepts of interest composed of: popularity, temporal dynamics and specificity. We describe and evaluate a novel algorithm for computing specificity leveraging the semantics of Linked Data and evaluate the impact of our model on user profiles of interests.

[1]  David Carmel,et al.  Trend detection through temporal link analysis , 2004, J. Assoc. Inf. Sci. Technol..

[2]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[3]  G. Miller Sociology. Social scientists wade into the tweet stream. , 2011, Science.

[4]  Jinan Fiaidhi,et al.  Towards Identifying Personalized Twitter Trending Topics using the Twitter Client RSS Feeds , 2012 .

[5]  Geert-Jan Houben,et al.  Semantics + filtering + search = twitcident. exploring information in social web streams , 2012, HT '12.

[6]  Tommaso Di Noia,et al.  Ranking the Linked Data: The Case of DBpedia , 2010, ICWE.

[7]  Ramanathan V. Guha,et al.  Information diffusion through blogspace , 2004, WWW '04.

[8]  Ioan Toma,et al.  Leveraging Usage Data for Linked Data Movie Entity Summarization , 2012, ArXiv.

[9]  Steffen Staab,et al.  TripleRank: Ranking Semantic Web Data by Tensor Decomposition , 2009, SEMWEB.

[10]  Barbara Di Eugenio,et al.  On the Usage of Kappa to Evaluate Agreement on Coding Tasks , 2000, LREC.

[11]  Kirk Martinez,et al.  Using social data as context for making recommendations: an ontology based approach , 2009, CIAO '09.

[12]  Nick Koudas,et al.  TwitterMonitor: trend detection over the twitter stream , 2010, SIGMOD Conference.

[13]  Alexandre Passant,et al.  Twarql: tapping into the wisdom of the crowd , 2010, I-SEMANTICS '10.

[14]  Qi Gao,et al.  Analyzing user modeling on twitter for personalized news recommendations , 2011, UMAP'11.

[15]  Seán O'Riain,et al.  Querying Linked Data Using Semantic Relatedness: A Vocabulary Independent Approach , 2011, NLDB.

[16]  Ah-Hwee Tan,et al.  Topic Detection, Tracking, and Trend Analysis Using Self-Organizing Neural Networks , 2001, PAKDD.

[17]  Jaana Kekäläinen,et al.  IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR '00.

[18]  John G. Breslin,et al.  Aggregated, interoperable and multi-domain user profiles for the social web , 2012, I-SEMANTICS '12.

[19]  J. Tanaka,et al.  Object categories and expertise: Is the basic level in the eye of the beholder? , 1991, Cognitive Psychology.

[20]  Simone Paolo Ponzetto,et al.  Knowledge Derived From Wikipedia For Computing Semantic Relatedness , 2007, J. Artif. Intell. Res..

[21]  Kjetil Nørvåg,et al.  WikiPop: personalized event detection system based on Wikipedia page view statistics , 2010, CIKM '10.

[22]  Amit P. Sheth,et al.  Personalized Filtering of the Twitter Stream , 2011, SPIM.

[23]  Yun Peng,et al.  Swoogle: A semantic web search and metadata engine , 2004, CIKM 2004.

[24]  Timothy W. Finin,et al.  Swoogle: a search and metadata engine for the semantic web , 2004, CIKM '04.

[25]  Dominik Benz,et al.  One Tag to Bind Them All: Measuring Term Abstractness in Social Metadata? , 2011, LWA.

[26]  Jugal K. Kalita,et al.  Streaming trend detection in Twitter , 2013, Int. J. Web Based Communities.

[27]  Alexandre Passant,et al.  dbrec - Music Recommendations Using DBpedia , 2010, SEMWEB.

[28]  Calton Pu,et al.  Study of Trend-Stuffing on Twitter through Text Classification , 2010 .

[29]  Santo Fortunato,et al.  Characterizing and modeling the dynamics of online popularity , 2010, Physical review letters.