Super line-connectivity of consecutive-d digraphs

Abstract The concept of a consecutive- d digraph was proposed by Du, Hsu and Hwang as a generalization of many digraphs, such as de Bruijn digraphs, Kautz digraphs, and Imase-Itoh digraphs, which contain many hamiltonian digraphs with near-minimum diameter and near-maximum connectivity. In this paper, we show sufficient conditions for modified consecutive- d digraphs to have super line-connectivity.

[1]  Ding-Zhu Du,et al.  The Hamiltonian property of generalized de Bruijn digraphs , 1991, J. Comb. Theory, Ser. B.

[2]  Makoto Imase,et al.  Design of a D-connected Digraph with a Minimum Number of Edges and a Quasiminimal Diameter: II , 1996, Discret. Appl. Math..

[3]  Makoto Imase,et al.  Fault-tolerant processor interconnection networks , 1986, Systems and Computers in Japan.

[4]  Hiroshi Nakada,et al.  Design of a d-connected digraph with a minimum number of edges and a quasiminimal diameter , 1990, Discret. Appl. Math..

[5]  Miquel Àngel Fiol Mora,et al.  General properties of c-circulant digraphs , 1988 .

[6]  Jean-Claude Bermond,et al.  Connectivity of kautz networks , 1993, Discret. Math..

[7]  Ding-Zhu Du,et al.  Connectivity of Consecutive-d Digraphs , 1992, Discret. Appl. Math..

[8]  Claude Kaiser,et al.  Distributed computing systems , 1986 .

[9]  Makoto Imase,et al.  Connectivity of Regular Directed Graphs with Small Diameters , 1985, IEEE Transactions on Computers.

[10]  Ding-Zhu Du,et al.  Generalized de Bruijn digraphs , 1988, Networks.

[11]  Miguel Angel Fiol,et al.  Line Digraph Iterations and the (d, k) Digraph Problem , 1984, IEEE Transactions on Computers.

[12]  Sudhakar M. Reddy,et al.  A Class of Graphs for Fault-Tolerant Processor Interconnections , 1984, ICDCS.

[13]  Claudine Peyrat,et al.  Connectivity of Imase and Itoh Digraphs , 1988, IEEE Trans. Computers.

[14]  Makoto Imase,et al.  Design to Minimize Diameter on Building-Block Network , 1981, IEEE Transactions on Computers.

[15]  Ding-Zhu Du,et al.  The Hamiltonian property of consecutive-d digraphs , 1993 .

[16]  Arnold L. Rosenberg,et al.  Interconnection Networks and Mapping and Scheduling Parallel Computations: Dimacs Workshop, February 7-9, 1994 , 1995 .

[17]  Jean-Claude Bermond,et al.  Large fault-tolerant interconnection networks , 1989, Graphs Comb..

[18]  Frank K. Hwang,et al.  The Hamiltonian property of linear functions , 1987 .

[19]  Ding-Zhu Du,et al.  Doubly Linked Ring Networks , 1985, IEEE Transactions on Computers.

[20]  Yahya Ould Hamidoune,et al.  Vosperian and superconnected Abelian Cayley digraphs , 1991, Graphs Comb..

[21]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[22]  Ding-Zhu Du,et al.  On Hamiltonian consecutive-d digraphs , 1989 .

[23]  Terunao Soneoka,et al.  Super Edge-Connectivity of Dense Digraphs and Graphs , 1992, Discret. Appl. Math..