Functionalized Hf3C2 and Zr3C2 MXenes for suppression of shuttle effect to enhance the performance of sodium–sulfur batteries

[1]  Shichong Xu,et al.  Surface Terminations of MXene: Synthesis, Characterization, and Properties , 2022, Symmetry.

[2]  Xue-Feng Zhao,et al.  Fe3O4/MXene Nanosphere-Based Microfluidic Chip for the Accurate Diagnosis of Alzheimer’s Disease , 2022, ACS Applied Nano Materials.

[3]  X. Zhao,et al.  Efficient Control of the Shuttle Effect in Sodium–Sulfur Batteries with Functionalized Nanoporous Graphenes , 2022, ACS Applied Nano Materials.

[4]  Chuanliang Wei,et al.  Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries , 2022, Nano Research.

[5]  Hongkang Wang,et al.  Covalent Encapsulation of Sulfur in a Graphene/N-doped Carbon Host for Enhanced Sodium-Sulfur Batteries , 2022, Chemical Engineering Journal.

[6]  R. Umer,et al.  Two-dimensional titanium carbide (Ti3C2Tx) MXenes to inhibit the shuttle effect in sodium sulfur batteries. , 2022, Physical chemistry chemical physics : PCCP.

[7]  S. Dou,et al.  Electrolytes/Interphases: Enabling Distinguishable Sulfur Redox Processes in Room‐Temperature Sodium‐Sulfur Batteries , 2022, Advanced Energy Materials.

[8]  A. Rogach,et al.  Generating Short‐Chain Sulfur Suitable for Efficient Sodium–Sulfur Batteries via Atomic Copper Sites on a N,O‐Codoped Carbon Composite , 2021, Advanced Energy Materials.

[9]  Yiling Sun,et al.  Metal-N4@Graphene as Multifunctional Anchoring Materials for Na-S Batteries: First-Principles Study , 2021, Nanomaterials.

[10]  H. Yang,et al.  MXene‐Based Materials for Electrochemical Sodium‐Ion Storage , 2021, Advanced science.

[11]  Md Mahbubul Islam,et al.  Single-Atom Catalysts for Improved Cathode Performance in Na–S Batteries: A Density Functional Theory (DFT) Study , 2021 .

[12]  Danling Wang,et al.  2D Nanomaterial, Ti3C2 MXene-Based Sensor to Guide Lung Cancer Therapy and Management † , 2021, Biosensors.

[13]  G. Ceder,et al.  Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization. , 2020, Chemical reviews.

[14]  R. Umer,et al.  Efficient suppression of the shuttle effect in Na-S batteries with an As2S3 anchoring monolayer. , 2020, Physical chemistry chemical physics : PCCP.

[15]  Chunsheng Wang,et al.  Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review , 2020 .

[16]  J. Larsson,et al.  Superior Anchoring of Sodium Polysulfides to the Polar C2N 2D Material: A Potential Electrode Enhancer in Sodium–Sulfur Batteries , 2020, Langmuir : the ACS journal of surfaces and colloids.

[17]  Huakun Liu,et al.  Multiregion Janus-Featured Cobalt Phosphide/Cobalt Composite for Highly Reversible Room-Temperature Sodium-Sulfur Batteries. , 2020, ACS nano.

[18]  A. Rogach,et al.  Covalent Encapsulation of Sulfur in a MOF‐Derived S, N‐Doped Porous Carbon Host Realized via the Vapor‐Infiltration Method Results in Enhanced Sodium–Sulfur Battery Performance , 2020, Advanced Energy Materials.

[19]  Ruopian Fang,et al.  Covalent fixing of sulfur in metal–sulfur batteries , 2020 .

[20]  Yi Du,et al.  High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion , 2020 .

[21]  Xiaobo Ji,et al.  Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review , 2020, Advanced Functional Materials.

[22]  F. Ma,et al.  Defective Phosphorene as a Promising Anchoring Material for Lithium–Sulfur Batteries , 2020 .

[23]  Y. Gogotsi,et al.  Boosting Performance of Na-S Batteries Using Sulfur-Doped Ti3C2Tx MXene Nanosheets with a Strong Affinity to Sodium Polysulfides. , 2019, ACS nano.

[24]  Dashuai Wang,et al.  A General Atomic Surface Modification Strategy for Improving Anchoring and Electrocatalysis Behavior of Ti3C2T2 MXene in Lithium-Sulfur Batteries. , 2019, ACS nano.

[25]  Zhifang Yang,et al.  Investigation of two‐dimensional hf‐based MXenes as the anode materials for li/na‐ion batteries: A DFT study , 2019, J. Comput. Chem..

[26]  L. Wan,et al.  Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries. , 2019, Journal of the American Chemical Society.

[27]  Jingxiang Zhao,et al.  Metal-N4/graphene as an efficient anchoring material for lithium-sulfur batteries: A computational study , 2018, Diamond and Related Materials.

[28]  M. Armand,et al.  A room-temperature sodium–sulfur battery with high capacity and stable cycling performance , 2018, Nature Communications.

[29]  Q. Meng,et al.  Theoretical investigation of zirconium carbide MXenes as prospective high capacity anode materials for Na-ion batteries , 2018 .

[30]  Jun Lu,et al.  30 Years of Lithium‐Ion Batteries , 2018, Advanced materials.

[31]  S. Dou,et al.  Sodium‐Sulfur Batteries: Room‐Temperature Sodium‐Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry (Adv. Energy Mater. 24/2017) , 2017 .

[32]  Deepak Kumar,et al.  Progress and prospects of sodium-sulfur batteries: A review , 2017 .

[33]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[34]  Weiqun Shi,et al.  Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. , 2017, ACS nano.

[35]  S. Du,et al.  A Two-Dimensional Zirconium Carbide by Selective Etching of Al3C3 from Nanolaminated Zr3Al3C5. , 2016, Angewandte Chemie.

[36]  Stefano Longo,et al.  A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur , 2016 .

[37]  Hongjie Dai,et al.  Recent advances in zinc-air batteries. , 2014, Chemical Society reviews.

[38]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[39]  L. Archer,et al.  The rechargeable aluminum-ion battery. , 2011, Chemical communications.

[40]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[41]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[42]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[43]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[44]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[45]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[46]  G. Scuseria,et al.  Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional , 1999 .

[47]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[48]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .