The log-generalized modified Weibull regression model

For the first time, we introduce the log-generalized modified Weibull regression model based on the modified Weibull distribution (Car- rasco, Ortega and Cordeiro Comput. Statist. Data Anal. 53 (2008) 450-462). This distribution can accommodate increasing, decreasing, bathtub and uni- modal shaped hazard functions. A second advantage is that it includes classi- cal distributions reported in lifetime literature as special cases. We also show that the new regression model can be applied to censored data since it repre- sents a parametric family of models that includes as submodels several widely known regression models and therefore can be used more effectively in the analysis of survival data. We obtain maximum likelihood estimates for the model parameters by considering censored data and evaluate local influence on the estimates of the parameters by taking different perturbation schemes. Some global-influence measurements are also investigated. In addition, we define martingale and deviance residuals to detect outliers and evaluate the model assumptions. We demonstrate that our extended regression model is very useful to the analysis of real data and may give more realistic fits than other special regression models.

[1]  M. B. Rajarshi,et al.  Bathtub distributions: a review , 1988 .

[2]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[3]  Anthony C. Atkinson,et al.  Plots, transformations, and regression : an introduction to graphical methods of diagnostic regression analysis , 1987 .

[4]  Lee J. Bain,et al.  An exponential power life-testing distribution , 1975 .

[5]  E Lesaffre,et al.  Local influence in linear mixed models. , 1998, Biometrics.

[6]  Francisco Louzada-Neto,et al.  Influence diagnostics for polyhazard models in the presence of covariates , 2008, Stat. Methods Appl..

[7]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[8]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[9]  Feng-Chang Xie,et al.  Diagnostics analysis in censored generalized Poisson regression model , 2007 .

[10]  Gilberto A. Paula,et al.  Log-modified Weibull regression models with censored data: Sensitivity and residual analysis , 2008, Comput. Stat. Data Anal..

[11]  Anthony N. Pettitt,et al.  Case-Weighted Measures of Influence for Proportional Hazards Regression , 1989 .

[12]  J. Klein,et al.  Survival Analysis: Techniques for Censored and Truncated Data , 1997 .

[13]  Mauricio Lima Barreto,et al.  Log-Burr XII regression models with censored data , 2008, Comput. Stat. Data Anal..

[14]  U. Hjorth A Reliability Distribution With Increasing, Decreasing, Constant and Bathtub-Shaped Failure Rates , 1980 .

[15]  H. Bolfarine,et al.  A Bayesian analysis of the exponentiated-Weibull distribution , 1999 .

[16]  P. Grambsch,et al.  Martingale-based residuals for survival models , 1990 .

[17]  Kang-Mo Jung Local Influence in Generalized Estimating Equations , 2008 .

[18]  Min Xie,et al.  Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function , 1996 .

[19]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[20]  R. Dennis Cook,et al.  Detection of Influential Observation in Linear Regression , 2000, Technometrics.

[21]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[22]  Xizhi Wu,et al.  Second‐Order Approach to Local Influence , 1993 .

[23]  Daniel Peña,et al.  The likelihood displacement: A unifying principle for influence measures , 1988 .

[24]  Gauss M. Cordeiro,et al.  Computational Statistics and Data Analysis a Generalized Modified Weibull Distribution for Lifetime Modeling , 2022 .

[25]  D. N. Prabhakar Murthy,et al.  A modified Weibull distribution , 2003, IEEE Trans. Reliab..

[26]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[27]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[28]  R. Cook Assessment of Local Influence , 1986 .

[29]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[30]  Anthony C. Davison,et al.  Regression model diagnostics , 1992 .

[31]  Debasis Kundu,et al.  Generalized Rayleigh distribution: different methods of estimations , 2005, Comput. Stat. Data Anal..

[32]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[33]  Heleno Bolfarine,et al.  Deviance residuals in generalised log-gamma regression models with censored observations , 2008 .

[34]  Magne Vollan Aarset,et al.  How to Identify a Bathtub Hazard Rate , 1987, IEEE Transactions on Reliability.

[35]  Vicente G Cancho,et al.  Generalized log-gamma regression models with cure fraction , 2009, Lifetime data analysis.

[36]  J. Ibrahim,et al.  Perturbation selection and influence measures in local influence analysis , 2007, 0803.2986.

[37]  Heleno Bolfarine,et al.  Influence diagnostics in generalized log-gamma regression models , 2003, Comput. Stat. Data Anal..

[38]  Luis A. Escobar,et al.  Assessing influence in regression analysis with censored data. , 1992, Biometrics.

[39]  Heleno Bolfarine,et al.  Influence diagnostics in exponentiated-Weibull regression models with censored data , 2006 .