Finite element approximation of nonlinear transient magnetic problems involving periodic potential drop excitations

Abstract This paper deals with the computation of nonlinear 2D transient magnetic fields when the data concerning the electric current sources involve potential drop excitations. In the first part, a mathematical model is stated, which is solved by an implicit time discretization scheme combined with a finite element method for space approximation. The second part focuses on developing a numerical method to compute periodic solutions by determining a suitable initial current which avoids large simulations to reach the steady state. This numerical method leads to solve a nonlinear system of equations which requires to approximate several nonlinear and linear magnetostatic problems. The proposed methods are first validated with an axisymmetric example and sinusoidal source having an analytical solution. Then, we show the saving in computational effort that this methodology offers to approximate practical problems specially with pulse-width modulation (PWM) voltage supply.

[1]  G. Bertotti,et al.  hysteresis in magnetism (electromagnetism) , 1998 .

[2]  Manuel Jesús Castro Díaz,et al.  Duality methods with an automatic choice of parameters Application to shallow water equations in conservative form , 2001, Numerische Mathematik.

[3]  Hossin Hosseinian,et al.  Power Electronics , 2020, 2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES).

[4]  D. W. Burow,et al.  Finite element analysis of induction machines in the frequency domain , 1993 .

[5]  H. Hofmann,et al.  Steady-state finite-element solver for rotor eddy currents in permanent-magnet machines using a shooting-Newton/GMRES approach , 2004, IEEE Transactions on Magnetics.

[6]  Andrej Stermecki,et al.  Numerical analysis of steady-state operation of three-phase induction machines by an approximate frequency domain technique1 , 2011, Elektrotech. Informationstechnik.

[7]  Takehisa Hara,et al.  Time-periodic finite element method for nonlinear diffusion equations , 1985 .

[8]  R. Glowinski,et al.  Analyse numerique du champ magnetique d'un alternateur par elements finis et sur-relaxation ponctuelle non lineaire , 1974 .

[9]  Oriano Bottauscio,et al.  Advanced model of laminated magnetic cores for two-dimensional field analysis , 2000 .

[10]  Three-Dimensional–Two-Dimensional Coupled Model for Eddy Currents in Laminated Iron Cores , 2012, IEEE Transactions on Magnetics.

[11]  K. Preis,et al.  Optimal Convergence of the Fixed-Point Method for Nonlinear Eddy Current Problems , 2009, IEEE Transactions on Magnetics.

[12]  K. Preis,et al.  An efficient time domain method for nonlinear periodic eddy current problems , 2006, IEEE Transactions on Magnetics.

[13]  A. Bermúdez,et al.  NUMERICAL SOLUTION OF A TRANSIENT NONLINEAR AXISYMMETRIC EDDY CURRENT MODEL WITH NONLOCAL BOUNDARY CONDITIONS , 2013 .

[14]  A. Bermúdez,et al.  Duality methods for solving variational inequalities , 1981 .

[15]  Heath Hofmann,et al.  Numerically efficient steady-state finite-element analysis of magnetically saturated electromechanical devices , 2003 .

[16]  R. Van Keer,et al.  Computational methods for the evaluation of the electromagnetic losses in electrical machinery , 1998 .

[17]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[18]  N. Takahashi,et al.  Practical analysis of 3-D dynamic nonlinear magnetic field using time-periodic finite element method , 1995 .

[19]  Florea I. Hantila,et al.  Polarization method for static fields , 2000 .

[20]  M. Chiampi,et al.  An improved estimation of iron losses in rotating electrical machines , 1991 .