Dimension Reduction of Large-Scale Second-Order Dynamical Systems via a Second-Order Arnoldi Method

A structure-preserving dimension reduction algorithm for large-scale second-order dynamical systems is presented. It is a projection method based on a second-order Krylov subspace. A second-order Arnoldi (SOAR) method is used to generate an orthonormal basis of the projection subspace. The reduced system not only preserves the second-order structure but also has the same order of approximation as the standard Arnoldi-based Krylov subspace method via linearization. The superior numerical properties of the SOAR-based method are demonstrated by examples from structural dynamics and microelectromechanical systems.

[1]  Jason V. Clark,et al.  Addressing the needs of complex MEMS design , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[2]  Mark J. Balas,et al.  Trends in large space structure control theory: Fondest hopes, wildest dreams , 1982 .

[3]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  R. Craig,et al.  Model reduction and control of flexible structures using Krylov vectors , 1991 .

[6]  Zhaojun Bai,et al.  SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[7]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[8]  Lawrence T. Pileggi,et al.  Practical considerations for passive reduction of RLC circuits , 1999, 1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051).

[9]  D. G. Meyer,et al.  Balancing and model reduction for second-order form linear systems , 1996, IEEE Trans. Autom. Control..

[10]  Lawrence T. Pileggi,et al.  Robust and passive model order reduction for circuits containing susceptance elements , 2002, ICCAD 2002.

[11]  Lawrence T. Pileggi,et al.  PRIMA: passive reduced-order interconnect macromodeling algorithm , 1997, ICCAD 1997.

[12]  Rolf Schuhmann,et al.  Two-step Lanczos algorithm for model order reduction , 2002 .

[13]  James Demmel,et al.  3D MEMS Simulation Modeling Using Modified Nodal Analysis , 2001 .

[14]  D Ramaswamy,et al.  Automatic Generation of Small-Signal Dynamic Macromodels from 3-D Simulation , 2001 .

[15]  Rodney D. Slone,et al.  Broadband model order reduction of polynomial matrix equations using single‐point well‐conditioned asymptotic waveform evaluation: derivations and theory , 2003 .

[16]  James Demmel,et al.  New Numerical Techniques and Tools in SUGAR for 3D MEMS Simulation , 2001 .

[17]  Roy R. Craig,et al.  Structural Dynamics: An Introduction to Computer Methods , 1981 .

[18]  Robert Skelton,et al.  Model reductions using a projection formulation , 1987, 26th IEEE Conference on Decision and Control.

[19]  R. Freund Krylov-subspace methods for reduced-order modeling in circuit simulation , 2000 .

[20]  B. Sheehan,et al.  ENOR: model order reduction of RLC circuits using nodal equations for efficient factorization , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).

[21]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[22]  Eric James Grimme,et al.  Krylov Projection Methods for Model Reduction , 1997 .

[23]  Zhaojun Bai,et al.  Error Estimation of the Padé Approximation of Transfer Functions via the Lanczos Process , 1998 .

[24]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[25]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[26]  P. Dooren,et al.  Model reduction of second order systems , 2005 .

[27]  Gene H. Golub,et al.  Matrix computations , 1983 .

[28]  R. D. Slone,et al.  Fast frequency sweep model order reduction of polynomial matrix equations resulting from finite element discretizations , 2002 .