Molecular structures of the two most stable conformers of free glycine

The equilibrium molecular structures of the two lowest‐energy conformers of glycine, Gly‐Ip and Gly‐IIn, have been characterized by high‐level ab initio electronic structure computations, including all‐electron cc‐pVTZ CCSD(T) geometry optimizations and 6‐31G* MP2 quartic force fields, the latter to account for anharmonic zero‐point vibrational effects to isotopologic rotational constants. Based on experimentally measured vibrationally averaged effective rotational constant sets of several isotopologues and our ab initio data for structural constraints and zero‐point vibrational shifts, least‐squares structural refinements were performed to determine improved Born‐Oppenheimer equilibrium (re) structures of Gly‐Ip and Gly‐IIn. Without the ab initio constraints even the extensive set of empirical rotational constants available for 5 and 10 isotopologues of Gly‐Ip and Gly‐IIn, respectively, cannot satisfactorily fix their molecular structure. Excellent agreement between theory and experiment is found for the rotational constants of both conformers, the rms residual of the final fits being 7.8 and 51.6 kHz for Gly‐Ip and Gly‐IIn, respectively. High‐level ab initio computations with focal point extrapolations determine the barrier to planarity separating Gly‐IIp and Gly‐IIn to be 20.5 ± 5.0 cm−1. The equilibrium torsion angle τ(NCCO) of Gly‐IIn, characterizing the deviation of its heavy‐atom framework from planarity, is (11 ± 2)°. Nevertheless, in the ground vibrational state the effective structure of Gly‐IIn has a plane of symmetry. © 2007 Wiley Periodicals, Inc. J Comput Chem 2007

[1]  Ludwik Adamowicz,et al.  Matrix-Isolation Infrared and Theoretical Studies of the Glycine Conformers , 1998 .

[2]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[3]  John F. Stanton,et al.  Analytic second derivatives in high-order many-body perturbation and coupled-cluster theories: Computational considerations and applications , 2000 .

[4]  Wesley D. Allen,et al.  The heat of formation of NCO , 1993 .

[5]  John F. Stanton,et al.  The accurate determination of molecular equilibrium structures , 2001 .

[6]  Attila G. Császár Conformers of gaseous glycine , 1992 .

[7]  A G Császár,et al.  Ab initio characterization of building units in peptides and proteins. , 1999, Progress in biophysics and molecular biology.

[8]  R. Suenram,et al.  Theory versus experiment: the case of glycine , 1980 .

[9]  P. Godfrey,et al.  Shape of Glycine , 1995 .

[10]  W. D. Allen,et al.  Molecular structure of proline. , 2004, Chemistry.

[11]  Henry F. Schaefer,et al.  Glycine conformational analysis , 1993 .

[12]  W. D. Allen,et al.  The Electronic Structure and Vibrational Spectrum of trans-HNOO , 2004 .

[13]  W. D. Allen,et al.  Definitive ab initio studies of model SN2 reactions CH(3)X+F- (X=F, Cl, CN, OH, SH, NH(2), PH(2)). , 2003, Chemistry.

[14]  W. D. Allen,et al.  On the ab initio determination of higher-order force constants at nonstationary reference geometries , 1993 .

[15]  D. Papoušek,et al.  Molecular vibrational-rotational spectra , 1982 .

[16]  Jürgen Gauss,et al.  The prediction of molecular equilibrium structures by the standard electronic wave functions , 1997 .

[17]  J. Laane,et al.  Structures and Conformations of Non-Rigid Molecules , 1993 .

[18]  W. D. Allen,et al.  The anharmonic force fields of HOF and F2O , 1988 .

[19]  J. Gauss,et al.  The equilibrium structure and fundamental vibrational frequencies of dioxirane , 1998 .

[20]  John F. Stanton,et al.  The ACES II program system , 1992 .

[21]  Henry F. Schaefer,et al.  In pursuit of the ab initio limit for conformational energy prototypes , 1998 .

[22]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[23]  J. Watson Vibrational Spectra and Structure , 1977 .

[24]  W. Thiel,et al.  Anharmonic force fields from analytic second derivatives: Method and application to methyl bromide , 1989 .

[25]  J. Storey,et al.  Microwave spectrum and conformation of glycine , 1978 .

[26]  John F. Stanton,et al.  The Equilibrium Structure of Benzene , 2000 .

[27]  P. Godfrey,et al.  Molecular structure of a conformer of glycine by microwave spectroscopy , 1999 .

[28]  Julia E. Rice,et al.  The elimination of singularities in derivative calculations , 1985 .

[29]  P. Botschwina,et al.  Cyanoisocyanoacetylene, N≡C-C≡C-N≡C. , 1998, Angewandte Chemie.

[30]  H. H. Nielsen The Vibration-Rotation Energies of Molecules , 1951 .

[31]  David Feller,et al.  The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water , 1993 .

[32]  David Feller,et al.  Application of systematic sequences of wave functions to the water dimer , 1992 .

[33]  A. Császár On the structures of free glycine and α-alanine , 1995 .

[34]  J. Olsen,et al.  Molecular equilibrium structures from experimental rotational constants and calculated vibration–rotation interaction constants , 2002 .

[35]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[36]  P. Jørgensen,et al.  CCSDT calculations of molecular equilibrium geometries , 1997 .

[37]  Matthew L. Leininger,et al.  Dream or Reality: Complete Basis Set Full Configuration Interaction Potential Energy Hypersurfaces , 2001 .

[38]  G. Wlodarczak,et al.  Determination of reliable structures from rotational constants , 1997 .

[39]  Christopher S. Johnson,et al.  Characterization of the X̃ 1A’ state of isocyanic acid , 1993 .

[40]  P. Pulay,et al.  Cubic force constants and equilibrium geometry of methane from Hartree–Fock and correlated wavefunctions , 1978 .

[41]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[42]  M. Horn,et al.  Structure of the CCCN and CCCCH radicals: Isotopic substitution and ab initio theory , 1995 .

[43]  Kumiko Tanaka,et al.  Main conformer of gaseous glycine: molecular structure and rotational barrier from electron diffraction data and rotational constants , 1991 .

[44]  W. D. Allen,et al.  The anharmonic force field and equilibrium molecular structure of ketene , 1995 .

[45]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon , 1996 .

[46]  Henry F. Schaefer,et al.  A systematic study of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher-derivative methods. Linear polyatomic molecules , 1990 .

[47]  F. Lovas,et al.  Millimeter wave spectrum of glycine , 1978 .

[48]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[49]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[50]  V. Szalay,et al.  General derivative relations for anharmonic force fields , 1996 .

[51]  L. Schäfer,et al.  Investigations concerning the apparent contradiction between the microwave structure and the ab initio calculations of glycine , 1978 .

[52]  W. D. Allen,et al.  Ab Initio Anharmonic Vibrational Analyses of Non-Rigid Molecules , 1993 .

[53]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[54]  N. Handy,et al.  The equilibrium structure of HCN , 1992 .

[55]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[56]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .