PROSAC: a submillimeter array survey of low-mass protostars - II. The mass evolution of envelopes, disks, and stars from the class 0 through I stages

Context. The key question about early protostellar evolution is how matter is accreted from the large-scale molecular cloud, through the circumstellar disk onto the central star. Aims. We constrain the masses of the envelopes, disks, and central stars of a sample of low-mass protostars and compare the results to theoretical models for the evolution of young stellar objects through the early protostellar stages. Methods. A sample of 20 Class 0 and I protostars has been observed in continuum at (sub)millimeter wavelengths at high angular resolution (typically 2 �� ) with the submillimeter array. Using detailed dust radiative transfer models of the interferometric data, as well as single-dish continuum observations, we have developed a framework for disentangling the continuum emission from the envelopes and disks, and from that estimated their masses. For the Class I sources in the sample HCO + 3–2 line emission was furthermore observed with the submillimeter array. Four of these sources show signs of Keplerian rotation, making it possible to determine the masses of the central stars. In the other sources the disks are masked by optically thick envelope and outflow emission. Results. Both Class 0 and I protostars are surrounded by disks with typical masses of about 0.05 M� , although significant scatter is seen in the derived disk masses for objects within both evolutionary stages. No evidence is found for a correlation between the disk . .. . ..

[1]  L. Observatory,et al.  Chemical History of Molecules in Circumstellar Disks , 2011, Proceedings of the International Astronomical Union.

[2]  C. Brinch,et al.  The kinematics of NGC 1333-IRAS2A – a true Class 0 protostar , 2009, 0905.4575.

[3]  M. Hogerheijde,et al.  The nature of the Class I population in Ophiuchus as revealed through gas and dust mapping , 2009, 0902.4005.

[4]  C. Dullemond,et al.  The chemical history of molecules in circumstellar disks - I. Ices , 2009, 0901.1313.

[5]  J. Girart,et al.  THE L723 LOW-MASS STAR FORMING PROTOSTELLAR SYSTEM: RESOLVING A DOUBLE CORE , 2008, 0811.3415.

[6]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[7]  G. Rieke,et al.  Spitzer and HHT Observations of Bok Globule B335: Isolated Star Formation Efficiency and Cloud Structure , 2008, 0807.2241.

[8]  P. Myers Protostar Mass due to Infall and Dispersal , 2008, 0807.1270.

[9]  D. Johnstone,et al.  Current Star Formation in the Ophiuchus and Perseus Molecular Clouds: Constraints and Comparisons from Unbiased Submillimeter and Mid-Infrared Surveys. II. , 2008, 0805.0599.

[10]  L. Mundy,et al.  Constraining the Earliest Circumstellar Disks and Their Envelopes , 2008, 0803.1272.

[11]  G. Fuller,et al.  Star formation in Perseus. IV. Mass-dependent evolution of dense cores , 2008, 0803.1064.

[12]  L. Hartmann,et al.  Constraining the Envelope Structure of L1527 IRS: Infrared Scattered Light Modeling , 2008, 0802.2677.

[13]  E. Dishoeck,et al.  Chemical changes during transport from cloud to disk , 2008, Proceedings of the International Astronomical Union.

[14]  E. Dishoeck,et al.  SMA observations of young disks: separating envelope, disk, and stellar masses in class I YSOs , 2008, 0801.3569.

[15]  Elizabeth Ledwosinska,et al.  The SCUBA Legacy Catalogues: Submillimeter-Continuum Objects Detected by SCUBA , 2008, 0801.2595.

[16]  R. A. Gutermuth,et al.  Spitzer Observations of NGC 1333: A Study of Structure and Evolution in a Nearby Embedded Cluster , 2007, 0710.1860.

[17]  M. Dunham,et al.  Identifying the Low-Luminosity Population of Embedded Protostars in the c2d Observations of Clouds and Cores , 2007, 0806.1754.

[18]  J. Tobin,et al.  A Flattened Protostellar Envelope in Absorption around L1157 , 2007, 0710.2314.

[19]  D. Padgett,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. VII. Ophiuchus Observed with MIPS , 2007, 0709.3492.

[20]  C. Brinch,et al.  A deeply embedded young protoplanetary disk around L1489 IRS observed by the submillimeter array , 2007, 0709.3175.

[21]  Jonathan P. Williams,et al.  A Submillimeter View of Circumstellar Dust Disks in ρ Ophiuchi , 2007, 0708.4185.

[22]  Austin,et al.  Comparing Star Formation on Large Scales in the c2d Legacy Clouds: Bolocam 1.1 mm Dust Continuum Surveys of Serpens, Perseus, and Ophiuchus , 2007, 0705.3984.

[23]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[24]  Miquel Solà,et al.  Polycyclic benzenoids: why kinked is more stable than straight. , 2007, The Journal of organic chemistry.

[25]  Qizhou Zhang,et al.  PROSAC: A Submillimeter Array Survey of Low-Mass Protostars. I. Overview of Program: Envelopes, Disks, Outflows, and Hot Cores , 2007, astro-ph/0701115.

[26]  Jonathan P. Williams,et al.  High-Resolution Submillimeter Constraints on Circumstellar Disk Structure , 2006, astro-ph/0610813.

[27]  D. Johnstone,et al.  Current Star Formation in the Perseus Molecular Cloud: Constraints from Unbiased Submillimeter and Mid-Infrared Surveys , 2006, astro-ph/0610381.

[28]  G. Fuller,et al.  Star formation in Perseus: II. SEDs, classification and lifetimes , 2006, astro-ph/0612601.

[29]  F. Bickelhaupt,et al.  Oxidative addition to main group versus transition metals: Insights from the Activation Strain model , 2006 .

[30]  S. Basu,et al.  The Burst Mode of Protostellar Accretion , 2006, astro-ph/0607118.

[31]  A. Sargent,et al.  The Evolution of Outflow-Envelope Interactions in Low-Mass Protostars , 2006, astro-ph/0605139.

[32]  D. Padgett,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. III. Perseus Observed with IRAC , 2006, astro-ph/0603547.

[33]  P. Mauskopf,et al.  Bolocam Survey for 1.1 mm Dust Continuum Emission in the c2d Legacy Clouds. I. Perseus , 2005, astro-ph/0602259.

[34]  S. Wolf,et al.  Constraining the Evolutionary Stage of Class I Protostars: Multiwavelength Observations and Modeling , 2005, astro-ph/0508380.

[35]  C. Dullemond,et al.  Protostellar Holes: Spitzer Space Telescope Observations of the Protostellar Binary IRAS 16293–2422 , 2005, astro-ph/0508210.

[36]  D. Wilner,et al.  Probing the Inner 200 AU of Low-Mass Protostars with the Submillimeter Array: Dust and Organic Molecules in NGC 1333 IRAS 2A , 2005, astro-ph/0506671.

[37]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[38]  G. Fuller,et al.  Star formation in Perseus - Clusters, filaments and the conditions for star formation , 2005, astro-ph/0505444.

[39]  K. Tassis,et al.  Magnetically Controlled Spasmodic Accretion during Star Formation. II. Results , 2004, astro-ph/0410002.

[40]  S. Bontemps,et al.  Multiple protostellar systems: I. A deep near infrared survey of Taurus and Ophiuchus protostellar objects , 2004, astro-ph/0407482.

[41]  J. Jørgensen Imaging chemical differentiation around the low-mass protostar L483-mm , 2004, astro-ph/0405385.

[42]  J. Girart,et al.  On the Evolutionary State of the Components of the YLW 15 Binary System , 2004, astro-ph/0402246.

[43]  E. F. Dishoeck,et al.  On the origin of H2CO abundance enhancements in low-mass protostars , 2004, astro-ph/0401635.

[44]  C. Dominik,et al.  UvA-DARE ( Digital Academic Repository ) Flaring vs . self-shadowed disks : The SEDs of Herbig Ae / Be stars , 2004 .

[45]  L. Observatory,et al.  Molecular inventories and chemical evolution of low-mass protostellar envelopes , 2003, astro-ph/0312231.

[46]  C. I. O. Technology.,et al.  The structure of the NGC 1333-IRAS2 protostellar system on 500 AU scales - An infalling envelope, a circumstellar disk, multiple outflows, and chemistry , 2003, astro-ph/0310110.

[47]  L. Mundy,et al.  Envelope Emission in Young Stellar Systems: A Subarcsecond Survey of Circumstellar Structure , 2003, astro-ph/0303640.

[48]  J. Girart,et al.  Very Large Array Observations of Proper Motions in YLW 15 , 2003 .

[49]  T. Greene,et al.  A NEAR-INFRARED MULTIPLICITY SURVEY OF CLASS I/FLAT-SPECTRUM SYSTEMS IN SIX NEARBY MOLECULAR CLOUDS , 2002, astro-ph/0312288.

[50]  E. F. Dishoeck,et al.  Does IRAS 16293–2422 have a hot core? Chemical inventory and abundance changes in its protostellar environment , 2002, astro-ph/0205457.

[51]  E. Dishoeck,et al.  Physical structure and CO abundance of low-mass protostellar envelopes , 2002, astro-ph/0205068.

[52]  Gif-sur-Yvette.,et al.  Discovery of new embedded Herbig-Haro objects in the $\rho$ Ophiuchi dark cloud , 2001, astro-ph/0110222.

[53]  E. Young,et al.  Hubble Space Telescope/NICMOS Imaging Survey of the Ophiuchus (Lynds 1688) Cluster , 2001, astro-ph/0110096.

[54]  L. Hartmann,et al.  Accretion Disks around Young Objects. III. Grain Growth , 2001, astro-ph/0101443.

[55]  J. Girart,et al.  A Subarcsecond Binary Radio Source Associated with the X-Ray-Emitting Young Stellar Object YLW 15 , 2000 .

[56]  L. Mundy,et al.  Tracing the Mass during Low-Mass Star Formation. II. Modeling the Submillimeter Emission from Preprotostellar Cores , 2000, astro-ph/0006183.

[57]  D. Padgett,et al.  The Spectrum of TMR-1C Is Consistent with a Background Star , 2000 .

[58]  G. Sandell,et al.  Testing Envelope Models of Young Stellar Objects with Submillimeter Continuum and Molecular-Line Observations , 2000, astro-ph/0001021.

[59]  K. Koyama,et al.  Rotation and X-Ray Emission from Protostars , 1999, astro-ph/9911379.

[60]  Lee G. Mundy,et al.  Unveiling the Circumstellar Envelope and Disk: A Subarcsecond Survey of Circumstellar Structures , 1999, astro-ph/9908301.

[61]  K. Koyama,et al.  Quasi-periodic X-Ray Flares from the Protostar YLW 15 , 1999, astro-ph/9911373.

[62]  P. Bodenheimer,et al.  The Formation of Protostellar Disks. III. The Influence of Gravitationally Induced Angular Momentum Transport on Disk Structure and Appearance , 1999 .

[63]  Ž. Ivezić,et al.  User Manual for DUSTY , 1999, astro-ph/9910475.

[64]  N. Evans Physical conditions in regions of star formation , 1999, astro-ph/9905050.

[65]  C. Chandler,et al.  Circumstellar kinematics and the measurement of stellar mass for the protostars TMC1 and TMC1A , 1999 .

[66]  James M. Moran,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[67]  D. Padgett,et al.  A Candidate Protoplanet in the Taurus Star-forming Region , 1998, astro-ph/9808302.

[68]  S. Basu Constraints on the Formation and Evolution of Circumstellar Disks in Rotating Magnetized Cloud Cores , 1998, astro-ph/9808140.

[69]  G. Blake,et al.  Envelope Structure on 700 AU Scales and the Molecular Outflows of Low-Mass Young Stellar Objects , 1998, The Astrophysical journal.

[70]  W. Langer,et al.  Outflow–infall interactions as a mechanism for terminating accretion in protostars , 1998, Nature.

[71]  California Institute of Technology,et al.  Subarcsecond Imaging at 267 GHz of a Young Binary System: Detection of a Dust Disk of Radius Less than 70 AU around T Tauri N , 1997, astro-ph/9709288.

[72]  P. Teuben,et al.  A Near-Infrared Imaging Survey of the ρ Ophiuchi Cloud Core , 1997 .

[73]  G. Blake,et al.  Tracing the Envelopes around Embedded Low-Mass Young Stellar Objects with HCO+ and Millimeter-Continuum Observations , 1997, astro-ph/9706082.

[74]  Qizhou Zhang,et al.  Isotopic CO Images near the Young Triple Star GSS 30 , 1997 .

[75]  S. Terebey,et al.  Compact Outflows Associated with TMC-1 and TMC-1A , 1996 .

[76]  L. Mundy,et al.  Imaging the HL Tauri Disk at λ = 2.7 Millimeters with the BIMA Array , 1996 .

[77]  John E. Carlstrom,et al.  PROTOSTELLAR ACCRETION DISKS RESOLVED WITH THE JCMT-CSO INTERFEROMETER , 1994 .

[78]  P. Andre',et al.  From T Tauri stars to protostars: Circumstellar material and young stellar objects in the rho Ophiuchi cloud , 1994 .

[79]  F. Shu,et al.  Collapse of magnetized molecular cloud cores. I: Semianalytical solution , 1993 .

[80]  F. Shu,et al.  Collapse of Magnetized Molecular Cloud Cores. II. Numerical Results , 1993 .

[81]  P. Andre',et al.  The Contribution of Disks and Envelopes to the Millimeter Continuum Emission from Very Young Low-Mass Stars , 1993 .

[82]  P. Myers,et al.  Bolometric temperatures of young stellar objects , 1993 .

[83]  P. Andre',et al.  Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps , 1993 .

[84]  H. Campins,et al.  Near-infrared, polarimetric imaging of the bipolar lobes of GSS 30 - Protostellar infall and/or outflow? , 1993 .

[85]  E. Feigelson,et al.  A Rich Cluster of Radio Stars in the rho Ophiuchi Cloud Cores , 1991 .

[86]  C. Masson,et al.  A 45 AU Radius Source around L1551-IRS 5: A Possible Accretion Disk , 1990 .

[87]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[88]  L. Hartmann,et al.  An IRAS Survey of the Taurus-Auriga Molecular Cloud , 1990 .

[89]  E. Young,et al.  High-resolution IRAS observations of the Rho Ophiuchi cloud core , 1986 .

[90]  P. Cassen,et al.  The collapse of the cores of slowly rotating isothermal clouds , 1984 .

[91]  P. Cassen,et al.  On the formation of protostellar disks , 1981 .

[92]  F. Shu Self-similar collapse of isothermal spheres and star formation. , 1977 .

[93]  R. Ulrich An infall model for the T Tauri phenomenon , 1976 .