Finite Automata and the Analysis of Infinite Transition Systems

In this tutorial, we present basic concepts and results from automata theory for the description and analysis of infinite transition systems. We introduce and discuss the classes of rational, automatic, and prefix-recognizable graphs and in each case address the question whether over such graphs the model-checking problem (with respect to natural logics) is decidable. Then we treat two different extensions of prefix-recognizable graphs, namely the graphs of the “Caucal hierarchy” and the graphs presented by ground tree rewriting systems, again with an analysis of their suitability for model-checking. This application of automata theoretic ideas helps to clarify the balance between the expressiveness of frameworks for the specification of models and the possibility to automatize verification.

[1]  Pierre Wolper,et al.  Representing Arithmetic Constraints with Finite Automata: An Overview , 2002, ICLP.

[2]  Christophe Morvan,et al.  On Rational Graphs , 2000, FoSSaCS.

[3]  Parosh Aziz Abdulla,et al.  Verifying programs with unreliable channels , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[4]  Antoine Meyer,et al.  Context-Sensitive Languages, Rational Graphs and Determinism , 2006, Log. Methods Comput. Sci..

[5]  Wolfgang Thomas,et al.  Constructing Infinite Graphs with a Decidable MSO-Theory , 2003, MFCS.

[6]  Werner Damm,et al.  The IO- and OI-Hierarchies , 1982, Theor. Comput. Sci..

[7]  Didier Caucal Deterministic graph grammars , 2008, Logic and Automata.

[8]  Frank Stephan,et al.  Automatic linear orders and trees , 2005, TOCL.

[9]  J. R. Büchi Regular Canonical Systems , 1964 .

[10]  Thomas Colcombet On Families of Graphs Having a Decidable First Order Theory with Reachability , 2002, ICALP.

[11]  Wolfgang Thomas,et al.  A Short Introduction to Infinite Automata , 2001, Developments in Language Theory.

[12]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[13]  C.-H. Luke Ong,et al.  Symbolic Backwards-Reachability Analysis for Higher-Order Pushdown Systems , 2008, Log. Methods Comput. Sci..

[14]  Achim Blumensath,et al.  Finite Presentations of Infinite Structures: Automata and Interpretations , 2004, Theory of Computing Systems.

[15]  Felix Klaedtke Bounds on the automata size for Presburger arithmetic , 2008, TOCL.

[16]  Dietmar Berwanger,et al.  The Monadic Theory of Tree-like Structures , 2001, Automata, Logics, and Infinite Games.

[17]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[18]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[19]  Achim Blumensath On the structure of graphs in the Caucal hierarchy , 2008, Theor. Comput. Sci..

[20]  Didier Caucal,et al.  On the Regular Structure of Prefix Rewriting , 1990, Theor. Comput. Sci..

[21]  J. Sakarovitch Eléments de théorie des automates , 2003 .

[22]  Achim Blumensath Prefix-Recognisable Graphs and Monadic Second-Order Logic , 2001 .

[23]  Sándor Vágvölgyi,et al.  Bottom-Up Tree Pushdown Automata: Classification and Connection with Rewrite Systems , 1994, Theor. Comput. Sci..

[24]  Didier Caucal,et al.  On infinite transition graphs having a decidable monadic theory , 1996, Theor. Comput. Sci..

[25]  Chloe Rispal,et al.  The synchronized graphs trace the context-sensitive languages , 2003, INFINITY.

[26]  Arnaud Carayol,et al.  The Caucal Hierarchy of Infinite Graphs in Terms of Logic and Higher-Order Pushdown Automata , 2003, FSTTCS.

[27]  Alfred V. Aho Indexed Grammars-An Extension of Context Free Grammars , 1967, SWAT.

[28]  Javier Esparza,et al.  Efficient Algorithms for Model Checking Pushdown Systems , 2000, CAV.

[29]  Bruno Courcelle,et al.  Monadic Second-Order Logic, Graph Coverings and Unfoldings of Transition Systems , 1998, Ann. Pure Appl. Log..

[30]  Sophie Tison,et al.  The theory of ground rewrite systems is decidable , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[31]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[32]  Didier Caucal On Infinite Terms Having a Decidable Monadic Theory , 2002, MFCS.

[33]  W. Thomas The theory of successor with an extra predicate , 1978 .

[34]  Christof Löding Ground Tree Rewriting Graphs of Bounded Tree Width , 2002, STACS.

[35]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[36]  Thierry Cachat Symbolic Strategy Synthesis for Games on Pushdown Graphs , 2002, ICALP.

[37]  Christof Löding Reachability Problems on Regular Ground Tree Rewriting Graphs , 2004, Theory of Computing Systems.

[38]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[39]  Colin Stirling,et al.  Rational Graphs Trace Context-Sensitive Languages , 2001, MFCS.