Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites

This article reviews defects in natural fibres and how, ultimately, they affect the properties of composite materials reinforced with such fibres. Under ideal circumstances, certain natural fibre like flax and hemp can display excellent tensile mechanical properties. However, the potential of the fibre is generally not realised in natural fibre-reinforced composites. Partly, this poor performance can be explained by the presence of defects in the fibres known variously as dislocations, kinks or microcompressions. After briefly considering the chemistry and structure of plant fibres, the properties of selected natural fibres are reviewed. The origin of defects and the impact that processing has on their presence is then considered. The effect that defects have on the mechanical properties of bast fibre and their susceptibility to chemical degradation is also reviewed. Finally, the effect that dislocations have on the properties of composites reinforced with natural fibres is discussed and areas of potential further research needed are highlighted.

[1]  C R Weisbin,et al.  Robots in space into the 21st century. , 1997, The Industrial robot.

[2]  D. Page,et al.  Behaviour of Single Wood Fibres under Axial Tensile Strain , 1971, Nature.

[3]  D. Fengel,et al.  Wood: Chemistry, Ultrastructure, Reactions , 1983 .

[4]  C. Hill,et al.  Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites , 2007 .

[5]  D. H. Page,et al.  The mechanical properties of single wood pulp fibers. III. The effect of drying stress on strength , 1975 .

[6]  R. Farris,et al.  Compressive and torsional behaviour of Kevlar 49 fibre , 1984 .

[7]  J. M. Dinwoodie,et al.  Timber, its nature and behaviour , 1981 .

[8]  A. J. Norton,et al.  Structural biocomposites from flax-Part I: Effect of bio-technical fibre modification on composite properties , 2006 .

[9]  H. Bos,et al.  Tensile and compressive properties of flax fibres for natural fibre reinforced composites , 2002 .

[10]  L. Weindling Long vegetable fibers : Manila, sisal, jute, flax and related fibers of commerce. , 1947 .

[11]  A. S. Argon,et al.  Fracture of Composites , 1972 .

[12]  W. Hall,et al.  A review of bast fibres and their composites. Part 1 – Fibres as reinforcements , 2010 .

[13]  C. Hill,et al.  RTM Hemp Fibre-Reinforced Polyester Composites , 2000 .

[14]  Robert Elias,et al.  Biocomposites Technology, Environmental Credentials and Market Forces , 2006 .

[15]  C. Baley Influence of kink bands on the tensile strength of flax fibers , 2004 .

[16]  Ichiro Sakurada,et al.  Experimental determination of the elastic modulus of crystalline regions in oriented polymers , 1962 .

[17]  P. Mcmullen,et al.  Fibre/resin composites for aircraft primary structures: a short history, 1936–1984 , 1984 .

[18]  C. Baley Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase , 2002 .

[19]  Andrzej K. Bledzki,et al.  Properties and modification methods for vegetable fibers for natural fiber composites , 1996 .

[20]  D. M. Bruce,et al.  Effect of Environmental Relative Humidity and Damage on the Tensile Properties of Flax and Nettle Fibers , 1998 .

[21]  John A. Bishopp,et al.  The history of Redux® and the Redux bonding process , 1997 .

[22]  D. Grubb,et al.  Single-fibre polymer composites , 1994 .

[23]  G. Daniel,et al.  Hemp Fiber Microstructure and Use of Fungal Defibration to Obtain Fibers for Composite Materials , 2006 .

[24]  J. E. Gordon,et al.  Work of fracture of natural cellulose , 1974, Nature.

[25]  P. Ander,et al.  Dislocations in pulp fibres – their origin, characteristics and importance – a review , 2001 .

[26]  S. Eichhorn,et al.  Strain induced shifts in the Raman spectra of natural cellulose fibers , 2000 .

[27]  George Jeronimidis,et al.  Composites with high work of fracture , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[28]  M. Hughes,et al.  The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites , 2008 .

[29]  David C. Martin,et al.  Micromechanisms of kinking in rigid-rod polymer fibres , 1991 .

[30]  F. L. Matthews,et al.  Composite Materials : Engineering and Science , 1993 .

[31]  Leslie H. Groom,et al.  A technique to measure strain distributions in single wood pulp fibers , 1996 .

[32]  C. Hill,et al.  The fracture toughness of bast fibre reinforced polyester composites Part 1 Evaluation and analysis , 2002 .

[33]  A. Donald,et al.  In situ ESEM study of the deformation of elementary flax fibres , 1999 .

[34]  Rudolf W. Kessler,et al.  New strategies for exploiting flax and hemp , 1996 .

[35]  L. G. Thygesen The effects of growth conditions and of processing into yarn on dislocations in hemp fibres , 2011 .

[36]  T. Nilsson,et al.  Influence of dislocations and plasticity on the tensile behaviour of flax and hemp fibres , 2007 .

[37]  D. Page,et al.  Elastic modulus of single wood pulp fibers , 1977 .

[38]  T. W. Clyne,et al.  An Introduction to Composite Materials: Fabrication , 1996 .

[39]  C. Baley,et al.  Influence of the sampling area of the stem on the mechanical properties of hemp fibers , 2011 .

[40]  P. Hornsby,et al.  Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: Part I Fibre characterization , 1997 .

[41]  J. Dinwoodie Failure in timber part 3: The effect of longitudinal compression on some mechanical properties , 1978, Wood Science and Technology.

[42]  R. E. Mark Cell Wall Mechanics of Tracheids , 1967 .

[43]  L. Thygesen,et al.  Quantification of dislocations in hemp fibers using acid hydrolysis and fiber segment length distributions , 2008 .

[44]  M. Asgharipour,et al.  The effects of growth and storage conditions on dislocations in hemp fibres , 2008, Journal of Materials Science.

[45]  M. Fan,et al.  Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopy , 2011 .

[46]  F. Wangaard,et al.  Variation in The Cell-Wall Density of Wood , 2007 .

[47]  L. Tabil,et al.  Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review , 2007 .

[48]  J. Karger‐Kocsis,et al.  Tensile fracture and failure behavior of technical flax fibers , 2003 .

[49]  J. Bréard,et al.  Mechanical Properties of Flax Fibers and of the Derived Unidirectional Composites , 2010 .

[50]  A. J. Bolton,et al.  Natural Fibers for Plastic Reinforcement , 1994 .

[51]  P. Ander,et al.  Quantification of dislocations in spruce pulp and hemp fibres using polarized light microscopy and image analysis , 2005 .

[52]  C. Hill,et al.  An investigation into the effects of micro-compressive defects on interphase behaviour in hemp-epoxy composites using half-fringe photoelasticity , 2000 .

[53]  R. Farris,et al.  Experimental verification of a microbuckling model for the axial compressive failure of high performance polymer fibres , 1988 .

[54]  M. Singh,et al.  Life Cycle Impact Assessment of Flax Fibre for the Reinforcement of Composites , 2009 .

[55]  R. D. Preston,et al.  The physical biology of plant cell walls , 1975 .

[56]  W. Hall,et al.  A review of bast fibres and their composites. Part 2 - Composites , 2010 .

[57]  J. Bolton The Potential of Plant Fibres as Crops for Industrial Use , 1995 .

[58]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[59]  R. Young,et al.  Micromechanical analysis of the kink‐band performance at the interface of a thermoplastic composite under tensile deformation , 2010 .

[60]  I. Burgert,et al.  Dislocations in single hemp fibres—investigations into the relationship of structural distortions and tensile properties at the cell wall level , 2007 .

[61]  John Summerscales,et al.  Energy Use in the Production of Flax Fiber for the Reinforcement of Composites , 2009 .

[62]  J. Bréard,et al.  Multi-scale morphological characterisation of flax: From the stem to the fibrils , 2010 .

[63]  Sabu Thomas,et al.  A review on interface modification and characterization of natural fiber reinforced plastic composites , 2001 .

[64]  C. Hill,et al.  Natural Fibre Reinforced Composites Opportunities and Challenges , 2010 .

[65]  E. Spārniņš,et al.  The effect of mechanical defects on the strength distribution of elementary flax fibres , 2009 .

[66]  R. E. Booker,et al.  The nanostructure of the cell wall of softwoods and its functions in a living tree , 1998, Holz als Roh- und Werkstoff.

[67]  S. Joshi,et al.  Are natural fiber composites environmentally superior to glass fiber reinforced composites , 2004 .

[68]  D. Himmelsbach,et al.  Building flax fibres: more than one brick in the walls , 2003 .

[69]  Wilfred A. Côté,et al.  Cellular ultrastructure of woody plants : proceedings of the Advanced Science Seminar, Pinebrook Conference Center, Upper Saranac Lake, New York, September, 1964 , 1965 .

[70]  A. Netravali,et al.  Modification of mechanical properties of Kevlar fibre by polymer infiltration , 1996, Journal of Materials Science.

[71]  J. Müssig Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications , 2010 .

[72]  S. Eichhorn,et al.  Review: Current international research into cellulosic fibres and composites , 2001 .

[73]  C. Hill,et al.  Silane coupling agents used for natural fiber/polymer composites: A review , 2010 .