Non-rigid 3D Shape Retrieval via Sparse Representation
暂无分享,去创建一个
Shuai Li | Lili Wan | Zhenjiang J. Miao | Yigang G. Cen | Z. Miao | L. Wan | Yigang Cen | S. Li
[1] Aly A. Farag,et al. Heat Kernels for Non-Rigid Shape Retrieval: Sparse Representation and Efficient Classification , 2012, 2012 Ninth Conference on Computer and Robot Vision.
[2] Yosi Keller,et al. Scale-Invariant Features for 3-D Mesh Models , 2012, IEEE Transactions on Image Processing.
[3] A. Yuille,et al. Dense Scale Invariant Descriptors for Images and Surfaces , 2012 .
[4] Paul Suetens,et al. SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes , 2011, 3DOR@Eurographics.
[5] Michael Elad,et al. Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .
[6] Iasonas Kokkinos,et al. Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[7] Leonidas J. Guibas,et al. Shape Google: a computer vision approach to isometry invariant shape retrieval , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.
[8] Leonidas J. Guibas,et al. A concise and provably informative multi-scale signature based on heat diffusion , 2009 .
[9] Cor J. Veenman,et al. Kernel Codebooks for Scene Categorization , 2008, ECCV.
[10] Thomas A. Funkhouser,et al. The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..
[11] Y. C. Pati,et al. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.
[12] Leonidas J. Guibas,et al. Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.
[13] Michael Elad,et al. Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit , 2008 .
[14] A. Bruckstein,et al. K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .