文
论文分享
演练场
杂货铺
论文推荐
字
编辑器下载
登录
注册
基于改进萤火虫算法的 SVM 核参数选取
复制论文ID
分享
摘要
作者
参考文献
暂无分享,去
创建一个
支持向量机(SVM)是一种性能优异的机器学习算法,其核函数参数的选取对于建模精度以及泛化能力有着重要的影响。提出一种基于改进萤火虫算法的 SVM核函数参数选取方法,通过改进萤火虫位置更新公式并在移动过程中引入亮度特征从而确定最佳的 SVM核函数参数。实验表明,该算法选取的 SVM核函数参数在保证分类器收敛性能的同时,提高了分类精度,取得了良好的优化效果。
杨海
|
丁毅
|
沈海斌
保存到论文桶