Improving robustness of hydrologic parameter estimation by the use of moving block bootstrap resampling

[1] Modeling of natural systems typically involves conceptualization and parameterization to simplify the representations of the underlying process. Objective methods for estimation of the model parameters then require optimization of a cost function, representing a measure of distance between the observations and the corresponding model predictions, typically by calibration in a static batch mode and/or via some dynamic recursive optimization approach. Recently, there has been a focus on the development of parameter estimation methods that appropriately account for different sources of uncertainty. In this context, we introduce an approach to sample the optimal parameter space that uses nonparametric block bootstrapping coupled with global optimization. We demonstrate the applicability of this procedure via a case study, in which we estimate the parameter uncertainty resulting from uncertainty in the forcing data and evaluate its impacts on the resulting streamflow simulations.

[1]  E. Carlstein The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence , 1986 .

[2]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[3]  S. Sorooshian,et al.  Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting , 2006 .

[4]  Alan David Hutson,et al.  Resampling Methods for Dependent Data , 2004, Technometrics.

[5]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[6]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[7]  E. Ziegel Introduction to Robust Estimation and Hypothesis Testing (2nd ed.) , 2005 .

[8]  Bryan A. Tolson,et al.  Dynamically dimensioned search algorithm for computationally efficient watershed model calibration , 2007 .

[9]  Marco Borga,et al.  Accuracy of radar rainfall estimates for streamflow simulation , 2002 .

[10]  Cajo J. F. ter Braak,et al.  Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation , 2008 .

[11]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[12]  Regina Y. Liu Moving blocks jackknife and bootstrap capture weak dependence , 1992 .

[13]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[14]  Keith Beven,et al.  Prophecy, reality and uncertainty in distributed hydrological modelling , 1993 .

[15]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[16]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data , 1996 .

[17]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 2. Application , 2006 .

[18]  R. Moore The probability-distributed principle and runoff production at point and basin scales , 1985 .

[19]  Vijay P. Singh,et al.  The NWS River Forecast System - catchment modeling. , 1995 .

[20]  S. Lahiri Theoretical comparisons of block bootstrap methods , 1999 .

[21]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[22]  S. Sorooshian,et al.  Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .

[23]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[24]  R. Vogel,et al.  The moving blocks bootstrap versus parametric time series models , 1996 .

[25]  G. A. Young,et al.  The bootstrap: To smooth or not to smooth? , 1987 .

[26]  Erniel B. Barrios,et al.  Bootstrap Methods , 2011, International Encyclopedia of Statistical Science.

[27]  S. N. Lahiri,et al.  On the Asymptotic Behaviour of the Moving Block Bootstrap for Normalized Sums of Heavy-Tail Random Variables , 1995 .

[28]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[29]  Joseph P. Romano,et al.  Bootstrap confidence bands for spectra and cross-spectra , 1992, IEEE Trans. Signal Process..

[30]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[31]  M. Rosenblatt A CENTRAL LIMIT THEOREM AND A STRONG MIXING CONDITION. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Henrik Madsen,et al.  Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling , 2008 .

[33]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[34]  Julia Kastner,et al.  Introduction to Robust Estimation and Hypothesis Testing , 2005 .

[35]  Upmanu Lall,et al.  Streamflow simulation: A nonparametric approach , 1997 .

[36]  P. Hall,et al.  On blocking rules for the bootstrap with dependent data , 1995 .

[37]  G. A. Young Alternative smoothed bootstraps , 1990 .

[38]  V. V. Srinivasa,et al.  Hybrid moving block bootstrap for stochastic simulation of multi-site multi-season streamflows , 2004 .

[39]  V. V. Srinivas,et al.  Hybrid matched-block bootstrap for stochastic simulation of multiseason streamflows , 2006 .

[40]  Faisal Hossain,et al.  Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture , 2005 .

[41]  Thomas M. Loughin,et al.  Data Analysis by Resampling: Concepts and Applications , 2001, Technometrics.

[42]  Melvin J. Dubnick Army Corps of Engineers , 1998 .

[43]  Rafał Synowiecki,et al.  Consistency and application of moving block bootstrap for non-stationary time series with periodic and almost periodic structure , 2007, 0711.4493.

[44]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[45]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[46]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[47]  R. Hogg An Introduction to Robust Estimation , 1979 .

[48]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[49]  Joel L. Horowitz,et al.  Bootstrap Methods for Markov Processes , 2003 .

[50]  A. Bowman,et al.  Applied smoothing techniques for data analysis : the kernel approach with S-plus illustrations , 1999 .

[51]  Kuolin Hsu,et al.  Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .

[52]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[53]  C. Lunneborg Data Analysis by Resampling: Concepts and Applications , 1999 .

[54]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[55]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .