Q-Factor Estimation by Compensation of Amplitude Spectra in Synchrosqueezed Wavelet Domain

We propose a stable <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>-estimation approach based on the compensation of amplitude spectra in the time–frequency domain after a synchrosqueezed wavelet transform (SSWT). SSWT employing a post-processing frequency reallocation method to the original representation of a continuous wavelet transform (CWT) for improving its readability provides the sharper time–frequency representation of a signal when compared with the other traditional time–frequency methods such as CWT or S-transform. For <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>-estimation, we transform a seismic trace into the time–frequency domain using SSWT at first. Then, we derive the amplitude compensation in the SSWT domain. By searching the predetermined <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula> range, the comparison between the compensated amplitude spectrum and the reference one in the SSWT domain is carried out. The output optimized <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>-factor estimation is evaluated by the minimum of the mean square error. For the robust and fast stabilization form of the amplitude compensation in the SSWT domain with noise amplification damping, the seismic pulse is truncated with a limited length and the obtained time–frequency maps using an SSWT are smoothed. The synthetic vertical seismic profiling data and the real stacked seismic data applications illustrate the effectiveness and the ability of the proposed method.

[1]  Roger A. Clark,et al.  Estimation of Q from surface seismic reflection data , 1998 .

[2]  Yanghua Wang,et al.  Q analysis on reflection seismic data , 2004 .

[3]  R. Clapp,et al.  Q-model building using one-way wave-equation migration Q analysis — Part 2: 3D field-data test , 2018 .

[4]  G. J. Tango,et al.  Efficient global matrix approach to the computation of synthetic seismograms , 1986 .

[5]  Mirko van der Baan,et al.  The robustness of seismic attenuation measurements using fixed- and variable-window time-frequency transforms , 2009 .

[6]  M. S. King,et al.  The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks , 1997 .

[7]  Walter E. Medeiros,et al.  Estimating quality factor from surface seismic data: A comparison of current approaches , 2011 .

[8]  Jinghuai Gao,et al.  Estimation of Quality Factor Q From the Instantaneous Frequency at the Envelope Peak of a Seismic Signal , 2011 .

[9]  K. Aki,et al.  Quantitative Seismology, 2nd Ed. , 2002 .

[10]  S. Shapiro,et al.  Viscoacoustic wave propagation in 2-D random media and separation of absorption and scattering attenuation , 1995 .

[11]  Mirko van der Baan,et al.  Attenuation estimation using high resolution time-frequency transforms , 2017, Digit. Signal Process..

[12]  E. Blias Accurate interval Q-factor estimation from VSP data , 2012 .

[13]  L. Sirgue,et al.  FWI-Guided Q Tomography and Q-PSDM for Imaging in the Presence of Complex Gas Clouds, A Case Study From Offshore Malaysia , 2014 .

[14]  Yanghua Wang,et al.  A stable and efficient approach of inverse Q filtering , 2002 .

[15]  Y. Li,et al.  Improving seismic Qp estimation using rock physics constraints , 2018 .

[16]  R. Tonn,et al.  THE DETERMINATION OF THE SEISMIC QUALITY FACTOR Q FROM VSP DATA: A COMPARISON OF DIFFERENT COMPUTATIONAL METHODS1 , 1991 .

[17]  Jing-Hua Gao,et al.  Time-Frequency Analysis of Seismic Data Using Synchrosqueezing Transform , 2014, IEEE Geoscience and Remote Sensing Letters.

[18]  Yanghua Wang,et al.  Inverse Q-filter for seismic resolution enhancement , 2006 .

[19]  Patrick Flandrin,et al.  Improving the readability of time-frequency and time-scale representations by the reassignment method , 1995, IEEE Trans. Signal Process..

[20]  Youli Quan,et al.  Seismic attenuation tomography using the frequency shift method , 1997 .

[21]  P. Flandrin,et al.  Differential reassignment , 1997, IEEE Signal Processing Letters.

[22]  M. Lebedev,et al.  Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks — A review , 2010 .

[23]  E. Strick,et al.  The Determination of Q, Dynamic Viscosity and Transient Creep Curves from Wave Propagation Measurements* , 1967 .

[24]  Tadeusz J. Ulrych,et al.  Estimation of quality factors from CMP records , 2002 .

[25]  J. Voss,et al.  COMPARISON OF METHODS TO DETERMINE Q IN SHALLOW MARINE SEDIMENTS FROM VERTICAL REFLECTION SEISMOGRAMS , 1985 .

[26]  Mirko van der Baan,et al.  Bandwidth enhancement: Inverse Q filtering or time-varying Wiener deconvolution? , 2012 .

[27]  S. Mousavi,et al.  Lateral Variation of Crustal Lg Attenuation in Eastern North America , 2018, Scientific Reports.

[28]  Sergey Fomel,et al.  Viscoacoustic modeling and imaging using low-rank approximation , 2014 .

[29]  Tieyuan Zhu,et al.  Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians , 2014 .

[30]  V. Singh,et al.  Estimation of Q from borehole data and its application to enhance surface seismic resolution: A case study , 2000 .

[31]  S. Mostafa Mousavi,et al.  Automatic noise-removal/signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data , 2017 .

[32]  Matt Hall,et al.  Resolution and uncertainty in spectral decomposition , 2006 .

[33]  D. Goldberg,et al.  The validity of Q estimates from borehole data using spectral ratios , 1990 .

[34]  J. Dvorkin,et al.  Modeling attenuation in reservoir and nonreservoir rock , 2006 .

[35]  Kurt J. Marfurt,et al.  Seismic Attributes for Prospect Identification and Reservoir Characterization , 2007 .

[36]  Frank D. Stacey,et al.  Anelastic degradation of acoustic pulses in rock , 1974 .

[37]  Mirko van der Baan,et al.  Applications of the synchrosqueezing transform in seismic time-frequency analysis , 2014 .

[38]  Justin K. Dix,et al.  Estimating quality factor and mean grain size of sediments from high-resolution marine seismic data , 2008 .

[39]  Hau-Tieng Wu,et al.  The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications , 2011, Signal Process..

[40]  Shuangquan Chen,et al.  Modeling and analysis of seismic wave dispersion based on the rock physics model , 2013 .

[41]  M. H. Worthington,et al.  Q estimation from vertical seismic profile data and anomalous variations in the central North Sea , 1985 .

[42]  Robert L. Nowack,et al.  Seismic attenuation values obtained from instantaneous‐frequency matching and spectral ratios , 1995 .

[43]  Theodoros Klimentos,et al.  Attenuation of P- and S-waves as a method of distinguishing gas and condensate from oil and water , 1995 .

[44]  R. White,et al.  Partial coherence matching of synthetic seismograms with seismic traces , 1980 .

[45]  Amos Nur,et al.  Seismic attenuation: Effects of pore fluids and frictional-sliding , 1982 .

[46]  Walter I. Futterman,et al.  Dispersive body waves , 1962 .

[47]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[48]  I. Daubechies,et al.  Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .

[49]  P. S. Hauge,et al.  Measurements of attenuation from vertical seismic profiles , 1981 .

[50]  Biondo Biondi,et al.  Q-compensated reverse-time migration , 2014 .

[51]  A. Singh,et al.  Seismic quality factors across a bottom simulating reflector in the Makran Accretionary Prism, Arabian Sea , 2011 .

[52]  Estimating Seismic Attenuation (Q) By an Analytical Signal Method , 2005 .

[53]  Hui Chen,et al.  Application of synchrosqueezed wavelet transforms to estimate the reservoir fluid mobility , 2018, Geophysical Prospecting.

[54]  M. Baan,et al.  Applications of high-resolution time-frequency transforms to attenuation estimation , 2017 .