Ontology-Mediated Probabilistic Model Checking

Probabilistic model checking (PMC) is a well-established method for the quantitative analysis of dynamic systems. Description logics (DLs) provide a well-suited formalism to describe and reason about terminological knowledge, used in many areas to specify background knowledge on the domain. We investigate how such knowledge can be integrated into the PMC process, introducing ontology-mediated PMC. Specifically, we propose a formalism that links ontologies to dynamic behaviors specified by guarded commands, the de-facto standard input formalism for PMC tools such as Prism. Further, we present and implement a technique for their analysis relying on existing DL-reasoning and PMC tools. This way, we enable the application of standard PMC techniques to analyze knowledge-intensive systems. Our approach is implemented and evaluated on a multi-server system case study, where different DL-ontologies are used to provide specifications of different server platforms and situations the system is executed in.

[1]  Christel Baier,et al.  Energy-Utility Quantiles , 2014, NASA Formal Methods.

[2]  Ian Horrocks,et al.  An Introduction to Description Logic , 2017 .

[3]  Magdalena Ortiz,et al.  Closed Predicates in Description Logics: Results on Combined Complexity , 2016, AMW.

[4]  Magdalena Ortiz,et al.  Ontology-Mediated Query Answering with Data-Tractable Description Logics , 2015, Reasoning Web.

[5]  Bijan Parsia,et al.  The OWL Reasoner Evaluation (ORE) 2015 Competition Report , 2017, Journal of Automated Reasoning.

[6]  Annabelle McIver,et al.  Probabilistic Models for the Guarded Command Language , 1997, Sci. Comput. Program..

[7]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[8]  Anni-Yasmin Turhan,et al.  Ontology-Mediated Probabilistic Model Checking (Extended Version) , 2019 .

[9]  Daniele Nardi,et al.  An Introduction to Description Logics , 2003, Description Logic Handbook.

[10]  Diego Calvanese,et al.  Actions and Programs over Description Logic Knowledge Bases: A Functional Approach , 2011 .

[11]  Marta Z. Kwiatkowska,et al.  Automated Verification Techniques for Probabilistic Systems , 2011, SFM.

[12]  Diego Calvanese,et al.  Linking Data to Ontologies , 2008, J. Data Semant..

[13]  Christel Baier,et al.  Family-Based Modeling and Analysis for Probabilistic Systems - Featuring ProFeat , 2016, FASE.

[14]  Franz Baader,et al.  Verification of Golog Programs over Description Logic Actions , 2013, FroCos.

[15]  Bernardo Cuenca Grau,et al.  OWL 2 Web Ontology Language: Profiles , 2009 .

[16]  David Parker,et al.  Symbolic Representations and Analysis of Large Probabilistic Systems , 2004, Validation of Stochastic Systems.

[17]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[18]  Franz Baader,et al.  A Scheme for Integrating Concrete Domains into Concept Languages , 1991, IJCAI.

[19]  Diego Calvanese,et al.  Description Logic Knowledge and Action Bases , 2014, J. Artif. Intell. Res..

[20]  Sebastian Rudolph,et al.  Nominals, Inverses, Counting, and Conjunctive Queries or: Why Infinity is your Friend! , 2010, J. Artif. Intell. Res..

[21]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[22]  Stephan Tobies,et al.  Complexity results and practical algorithms for logics in knowledge representation , 2001, ArXiv.

[23]  Christel Baier,et al.  Advances in probabilistic model checking with PRISM: variable reordering, quantiles and weak deterministic Büchi automata , 2017, International Journal on Software Tools for Technology Transfer.

[24]  Michael Nieke,et al.  Context Aware Reconfiguration in Software Product Lines , 2016, VaMoS.

[25]  Edsger W. Dijkstra,et al.  A Discipline of Programming , 1976 .

[26]  Christel Baier,et al.  Energy-Utility Analysis of Probabilistic Systems with Exogenous Coordination , 2018, It's All About Coordination.

[27]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[28]  Christel Baier,et al.  Principles of model checking , 2008 .

[29]  Christel Baier,et al.  Probabilistic Model Checking for Feature-Oriented Systems , 2015, LNCS Trans. Aspect Oriented Softw. Dev..

[30]  Christel Baier,et al.  Probabilistic Model Checking and Non-standard Multi-objective Reasoning , 2014, FASE.

[31]  Yevgeny Kazakov,et al.  RIQ and SROIQ Are Harder than SHOIQ , 2008, KR.

[32]  Sean Bechhofer,et al.  The OWL API: A Java API for OWL ontologies , 2011, Semantic Web.

[33]  Yarden Katz,et al.  Pellet: A practical OWL-DL reasoner , 2007, J. Web Semant..

[34]  Carsten Lutz,et al.  Inverse Roles Make Conjunctive Queries Hard , 2007, Description Logics.

[35]  Frédéric Boniol,et al.  Improving Model Checking with Context Modelling , 2012, Adv. Softw. Eng..

[36]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[37]  Jens Claßen,et al.  Verification of Knowledge-Based Programs over Description Logic Actions , 2015, IJCAI.