Finite-dimensional risk-sensitive filtering for continuous-time nonlinear systems

Risk-sensitive filtering results are obtained for a class of continuous-time nonlinear stochastic signal models. A modified Zakai equation is obtained for the risk-sensitive information state and an expression for the optimizing risk-sensitive estimate is given. It is shown that if the drift function in the state space model satisfies a certain partial differential equation involving the risk-sensitive cost-kernel, finite-dimensional risk-sensitive information states and filters can be obtained for quite general nonlinear drift functions. Brief discussions on small noise limit results and possible extensions are also included.

[1]  Robert J. Elliott,et al.  Finite Dimensional Risk Sensitive Information States , 1995 .

[2]  S. Marcus,et al.  On Lie algebras and finite dimensional filtering , 1982 .

[3]  J. Levine,et al.  Exact finite dimensional filters for a class of nonlinear discrete-time systems † , 1986 .

[4]  M. Zakai On the optimal filtering of diffusion processes , 1969 .

[5]  J. Speyer,et al.  Optimal stochastic estimation with exponential cost criteria , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[6]  Robert J. Elliott,et al.  General finite-dimensional risk-sensitive problems and small noise limits , 1996, IEEE Trans. Autom. Control..

[7]  Robert J. Elliott,et al.  Risk-sensitive generalizations of minimum variance estimation and control , 1997 .

[8]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[9]  John B. Moore,et al.  Risk-sensitive filtering and smoothing for hidden Markov models , 1995 .

[10]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[11]  Matthew,et al.  An Information-State Approach to Risk Sensitive Tracking Problems , 1994 .

[12]  Steven I. Marcus,et al.  Optimal nonlinear estimation for a class of discrete-time stochastic systems , 1979 .

[13]  Sawitzki GÜnther,et al.  Finite dimensional filter systems in discrete time , 1981 .

[14]  Rhodes,et al.  Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games , 1973 .

[15]  John S. Baras,et al.  Finite-dimensional optimal controllers for nonlinear plants , 1995 .

[16]  A. Bensoussan Stochastic Control of Partially Observable Systems , 1992 .

[17]  George C. Verghese,et al.  Stochastic interpretation of H/sub /spl infin// and robust estimation , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[18]  V. Benes Exact finite-dimensional filters for certain diffusions with nonlinear drift , 1981 .

[19]  M. James,et al.  Output feedback risk-sensitive control and differential games for continuous-time nonlinear systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[20]  O. Zeitouni Approximate and limit results for nonlinear filters with small observation noise: the linear sensor and constant diffusion coefficient case , 1988 .

[21]  S. Chikte,et al.  Optimal filters for bilinear systems with nilpotent Lie algebras , 1979 .

[22]  Robert J. Elliott,et al.  Risk Sensitive Generalization of Minimum Variance Estimation and Control , 1995 .

[23]  M. James,et al.  Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems , 1994, IEEE Trans. Autom. Control..

[24]  O. Zeitouni An extension of the Beneš filter and some identification problems solved by nonlinear filtering methods , 1984 .

[25]  John B. Moore,et al.  Risk-sensitive filtering and smoothing via reference probability methods , 1997, IEEE Trans. Autom. Control..

[26]  A. Bensoussan,et al.  Optimal control of partially observable stochastic systems with an exponential-of-integral performance index , 1985 .

[27]  P. Whittle Risk-sensitive linear/quadratic/gaussian control , 1981, Advances in Applied Probability.