Lymphatic vasculature development

Although the process of blood vasculature formation has been well documented, little is known about lymphatic vasculature development, despite its importance in normal and pathological conditions. The lack of specific lymphatic markers has hampered progress in this field. However, the recent identification of genes that participate in the formation of the lymphatic vasculature denotes the beginning of a new era in which better diagnoses and therapeutic treatment(s) of lymphatic disorders could become a reachable goal.

[1]  K. Alitalo,et al.  Vascular endothelial growth factor C induces angiogenesis in vivo. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Karkkainen,et al.  Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. , 2001, Cancer research.

[3]  S. Hirakawa,et al.  Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[4]  Shay Soker,et al.  Neuropilin-1 Is Expressed by Endothelial and Tumor Cells as an Isoform-Specific Receptor for Vascular Endothelial Growth Factor , 1998, Cell.

[5]  R. M. H. Mcminn,et al.  Evolution and Comparative Morphology of the Lymphatic System , 1970 .

[6]  K. Devriendt,et al.  Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. , 2003, American journal of human genetics.

[7]  F. J. Livesey,et al.  Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina , 2003, Nature Genetics.

[8]  Marlys H Witte,et al.  FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. , 2003, Human molecular genetics.

[9]  F. Sabin On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig , 1902 .

[10]  C. Goodman,et al.  Neuropilin-2, a Novel Member of the Neuropilin Family, Is a High Affinity Receptor for the Semaphorins Sema E and Sema IV but Not Sema III , 1997, Neuron.

[11]  P. Gruss,et al.  Prox1 function is crucial for mouse lens-fibre elongation , 1999, Nature Genetics.

[12]  B. Christ,et al.  Lymphangioblasts in the avian wing bud , 1999, Developmental dynamics : an official publication of the American Association of Anatomists.

[13]  J. Cyster,et al.  A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Jackson,et al.  LYVE-1, a New Homologue of the CD44 Glycoprotein, Is a Lymph-specific Receptor for Hyaluronan , 1999, The Journal of cell biology.

[15]  G. Schaffner,et al.  Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. , 1997, American Journal of Pathology.

[16]  M. Detmar,et al.  An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype , 2002, The EMBO journal.

[17]  R. Jain,et al.  Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. , 1997, Science.

[18]  H. Dvorak,et al.  T1α/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema , 2003, The EMBO journal.

[19]  E. Tschachler,et al.  Lymphatic endothelium and Kaposi's sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. , 1998, Cancer research.

[20]  G. Oliver,et al.  A Stepwise Model of the Development of Lymphatic Vasculature , 2002, Annals of the New York Academy of Sciences.

[21]  M. Witte,et al.  Lymphangiogenesis and lymphangiodysplasia: From molecular to clinical lymphology , 2001, Microscopy research and technique.

[22]  D. Kerjaschki,et al.  The beta-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. , 2001, The American journal of pathology.

[23]  Bruce M. Carlson,et al.  Human Embryology and Developmental Biology , 1994 .

[24]  K. Alitalo,et al.  Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox‐1 homeobox transcription factor , 2002, The EMBO journal.

[25]  K. Devriendt,et al.  Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. , 2000, American journal of human genetics.

[26]  G. Oliver,et al.  Prox1 Function Is Required for the Development of the Murine Lymphatic System , 1999, Cell.

[27]  K. Alitalo,et al.  Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. , 1998, Science.

[28]  D. Ferguson,et al.  Mouse LYVE-1 Is an Endocytic Receptor for Hyaluronan in Lymphatic Endothelium* , 2001, The Journal of Biological Chemistry.

[29]  M. Skobe,et al.  Therapeutic lymphangiogenesis with human recombinant VEGF‐C , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  R. Moll,et al.  Complexus adhaerentes, a new group of desmoplakin-containing junctions in endothelial cells: II. Different types of lymphatic vessels. , 1994, Differentiation; research in biological diversity.

[31]  R. Grainger Embryonic lens induction: shedding light on vertebrate tissue determination. , 1992, Trends in genetics : TIG.

[32]  Robert E. Ferrell,et al.  Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema , 2000, Nature Genetics.

[33]  K. Alitalo,et al.  Vascular growth factors and lymphangiogenesis. , 2002, Physiological reviews.

[34]  Thomas N. Sato,et al.  Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation , 1995, Nature.

[35]  G. Vrensen,et al.  VEGFR‐3 in adult angiogenesis , 2001, The Journal of pathology.

[36]  C. McClure,et al.  The anatomy and development of the jugular lymph sacs in the domestic cat (Felis domestica) , 1910 .

[37]  A. Szuba,et al.  The third circulation: radionuclide lymphoscintigraphy in the evaluation of lymphedema. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[38]  G. Yancopoulos,et al.  In Situ Expression of Angiopoietins in Astrocytomas Identifies Angiopoietin-2 as an Early Marker of Tumor Angiogenesis , 1999, Experimental Neurology.

[39]  E C Nice,et al.  Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF‐C/D receptor VEGFR‐3 , 2001, The EMBO journal.

[40]  K. Alitalo,et al.  VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. , 1999, The American journal of pathology.

[41]  Rong Zhou,et al.  Regulation of Blood and Lymphatic Vascular Separation by Signaling Proteins SLP-76 and Syk , 2003, Science.

[42]  Thomas Hawighorst,et al.  Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis , 2001, Nature Medicine.

[43]  Nathan D. Lawson,et al.  Arteries and veins: making a difference with zebrafish , 2002, Nature Reviews Genetics.

[44]  M. Skobe,et al.  Vascular endothelial growth factor-C (VEGF-C) and its receptors KDR and flt-4 are expressed in AIDS-associated Kaposi's sarcoma. , 1999, The Journal of investigative dermatology.

[45]  P. Dollé,et al.  Net, an Ets ternary complex transcription factor, is expressed in sites of vasculogenesis, angiogenesis, and chondrogenesis during mouse development , 2001, Mechanisms of Development.

[46]  K. Alitalo,et al.  Net‐targeted mutant mice develop a vascular phenotype and up‐regulate egr‐1 , 2001, The EMBO journal.

[47]  Steven A. Stacker,et al.  VEGF-D promotes the metastatic spread of tumor cells via the lymphatics , 2001, Nature Medicine.

[48]  M. Karkkainen,et al.  Lymphatic endothelial regulation, lymphoedema, and lymph node metastasis. , 2002, Seminars in cell & developmental biology.

[49]  B. Hogan,et al.  The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. , 1997, Genes & development.

[50]  T. Veikkola,et al.  Signalling via vascular endothelial growth factor receptor‐3 is sufficient for lymphangiogenesis in transgenic mice , 2001, The EMBO journal.

[51]  P. Campochiaro,et al.  Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. , 2002, Developmental cell.

[52]  L. Williams,et al.  Mice Lacking Expression of Secondary Lymphoid Organ Chemokine Have Defects in Lymphocyte Homing and Dendritic Cell Localization , 1999, The Journal of experimental medicine.

[53]  M. W. Glynn,et al.  Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. , 2000, American journal of human genetics.

[54]  T. Veikkola,et al.  Lymphangiogenic Gene Therapy With Minimal Blood Vascular Side Effects , 2002, The Journal of experimental medicine.

[55]  Pamela F. Jones,et al.  Requisite Role of Angiopoietin-1, a Ligand for the TIE2 Receptor, during Embryonic Angiogenesis , 1996, Cell.

[56]  S. V. D. van der Putte The early development of the lymphatic system in mouse embryos. , 1975, Acta morphologica Neerlando-Scandinavica.

[57]  M. Detmar,et al.  The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. , 2002, Genes & development.

[58]  K. Alitalo,et al.  Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. , 2000, The American journal of pathology.

[59]  Y. Yoon,et al.  VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. , 2003, The Journal of clinical investigation.

[60]  Peter Carmeliet,et al.  Molecular mechanisms of lymphangiogenesis in health and disease. , 2002, Cancer cell.

[61]  Guillermo Oliver,et al.  Hepatocyte migration during liver development requires Prox1 , 2000, Nature Genetics.

[62]  Y. Nodasaka,et al.  Desmoplakin as a specific marker of lymphatic vessels. , 2001, Microvascular research.

[63]  K. Plate,et al.  Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. , 1998, The American journal of pathology.

[64]  E. Tschachler,et al.  Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. , 1999, The American journal of pathology.

[65]  K. Alitalo,et al.  VEGF‐C and VEGF‐D expression in neuroendocrine cells and their receptor, VEGFR‐3, in fenestrated blood vessels in human tissues , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[66]  K. Alitalo,et al.  Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[67]  B. Lanske,et al.  Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. , 1996, Bone.

[68]  R. Ferrell,et al.  Hereditary lymphedema: evidence for linkage and genetic heterogeneity. , 1998, Human molecular genetics.

[69]  D. Parry,et al.  Molecular structure of the human desmoplakin I and II amino terminus. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[70]  W. Knudson,et al.  Hyaluronan‐binding proteins in development, tissue homeostasis, and disease , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[71]  K. Alitalo,et al.  Adenoviral Expression of Vascular Endothelial Growth Factor-C Induces Lymphangiogenesis in the Skin , 2001, Circulation research.

[72]  M. Karkkainen,et al.  Abnormal lymphatic vessel development in neuropilin 2 mutant mice. , 2002, Development.

[73]  Adrian L Harris,et al.  Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. , 2002, Cancer research.

[74]  K. Alitalo,et al.  VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. , 1997, Developmental biology.

[75]  K. Alitalo,et al.  VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. , 1996, Development.

[76]  R. Kauppinen,et al.  A model for gene therapy of human hereditary lymphedema , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[77]  D. Jackson,et al.  LYVE-1, the lymphatic system and tumor lymphangiogenesis. , 2001, Trends in immunology.

[78]  Rakesh K Jain,et al.  Lymphatic Metastasis in the Absence of Functional Intratumor Lymphatics , 2002, Science.

[79]  J. M. Yoffey,et al.  Lymphatics, lymph and the lymphomyeloid complex , 1970 .

[80]  F. Sabin On the development of the superficial lymphatics in the skin of the pig , 1904 .

[81]  van der Putte Sc The early development of the lymphatic system in mouse embryos. , 1975 .

[82]  R. Jain,et al.  LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. , 2001, Cancer research.

[83]  L. Orci,et al.  Vascular endothelial growth factor‐C‐mediated lymphangiogenesis promotes tumour metastasis , 2001, The EMBO journal.