Implementation and verification of the Park–Paulino–Roesler cohesive zone model in 3D

Abstract The Park–Paulino–Roesler (PPR) potential-based model is a cohesive constitutive model formulated to be consistent under a high degree of mode-mixity. Herein, the PPR’s generalization to three-dimensions is detailed, its implementation in a finite element framework is discussed, and its use in single-core and high performance computing (HPC) applications is demonstrated. The PPR model is shown to be an effective constitutive model to account for crack nucleation and propagation in a variety of applications including adhesives, composites, linepipe steel, and microstructures.

[1]  M. Elices,et al.  The cohesive zone model: advantages, limitations and challenges , 2002 .

[2]  William Gropp,et al.  PETSc Users Manual Revision 3.4 , 2016 .

[3]  Michael F. Ashby,et al.  Intergranular fracture at elevated temperature , 1975 .

[4]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[5]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[6]  G. Paulino,et al.  Cohesive fracture model for functionally graded fiber reinforced concrete , 2010 .

[7]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[8]  Somnath Ghosh,et al.  A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation , 2008 .

[9]  Glaucio H. Paulino,et al.  A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material , 2006 .

[10]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[11]  Ingo Scheider,et al.  Crack propagation analyses with CTOA and cohesive model: Comparison and experimental validation , 2013 .

[12]  A. Needleman An analysis of tensile decohesion along an interface , 1990 .

[13]  J. Ratcliffe Characterization of the Edge Crack Torsion (Ect) Test for Mode III Fracture Toughness Measurement of Laminated Composites , 2013 .

[14]  Z. F. Zhang,et al.  Fatigue cracking at twin boundaries: Effects of crystallographic orientation and stacking fault energy (vol 60, pg 3113, 2012) , 2012 .

[15]  A. Ruina,et al.  Cohesive Zone Models and Fracture , 2011 .

[16]  Glaucio H. Paulino,et al.  A unified potential-based cohesive model of mixed-mode fracture , 2009 .

[17]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[18]  E. Iesulauro DECOHESION OF GRAIN BOUNDARIES IN THREE-DIMENSIONAL STATISTICAL REPRESENTATIONS OF ALUMINUM POLYCRYSTALS , 2006 .

[19]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[20]  John H. Crews,et al.  The mixed-mode bending method for delamination testing , 1989 .

[21]  W. Brocks,et al.  Simulation of cup cone fracture using the cohesive model , 2003 .

[22]  W. Brocks,et al.  Crack Extension at an Interface: Prediction of Fracture Toughness and Simulation of Crack Path Deviation , 2005 .

[23]  V. Tomar Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method. , 2008, Journal of biomechanical engineering.

[24]  G. Paulino,et al.  Simulation of debonding in Al/epoxy T-peel joints using a potential-based cohesive zone model , 2011 .

[25]  R. H. Dodds,et al.  Simulation of ductile crack growth in thin aluminum panels using 3-D surface cohesive elements , 2001 .

[26]  Victor E. Saouma,et al.  Fracture Mechanics of Bond in Reinforced Concrete , 1984 .

[27]  G. Paulino,et al.  Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces , 2011 .

[28]  G. Paulino,et al.  On the enhancement of bond toughness for Al/epoxy T-peel joints with laser treated substrates , 2011 .

[29]  Jr. J. Crews,et al.  Mixed-Mode Bending Method for Delamination Testing , 1990 .

[30]  R. Krueger,et al.  Analysis of Flexure Tests for Transverse Tensile Strength Characterization of Unidirectional Composites , 2003 .

[31]  Paul A. Wawrzynek,et al.  Simulation of the fracture process in rock with application to hydrofracturing , 1986 .

[32]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[33]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[34]  D. Vashishth,et al.  Cohesive finite element modeling of age-related toughness loss in human cortical bone. , 2006, Journal of biomechanics.

[35]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[36]  Somnath Ghosh,et al.  A framework for automated analysis and simulation of 3D polycrystalline microstructures. , 2008 .