Assessing uncertainties in urban drainage models

[1]  Philip J. McCarthy,et al.  The Use of Balanced Half-Sample Replication in Cross-Validation Studies , 1976 .

[2]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[3]  V. Klemeš,et al.  Dilettantism in hydrology: Transition or destiny? , 1986 .

[4]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[5]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[6]  Wolfgang Rauch,et al.  Required accuracy of rainfall data for integrated urban drainage modeling , 1998 .

[7]  Jean-Pierre Villeneuve,et al.  Uncertainty assessment and analysis of the calibrated parameter values of an urban storm water quality model , 1998 .

[8]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[9]  K. W. Hipel,et al.  Understanding and managing uncertainty and information , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[10]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[11]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[12]  P. Harremoës The role of uncertainty in appliction of integrated urban water modelling , 2003 .

[13]  W. Walker,et al.  Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support , 2003 .

[14]  G Chebbo,et al.  Bayesian approach for the calibration of models: application to an urban stormwater pollution model. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[15]  J. Vaze,et al.  Comparative evaluation of urban storm water quality models , 2003 .

[16]  M Mourad,et al.  Accounting for sensor calibration, data validation, measurement and sampling uncertainties in monitoring urban drainage systems. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[17]  J.-L. Bertrand-Krajewski,et al.  Accounting for sensor calibration, concentration heterogeneity, measurement and sampling uncertainties in monitoring urban drainage systems , 2003 .

[18]  Hoshin Vijai Gupta,et al.  Rainfall-runoff modelling in gauged and ungauged catchments , 2004 .

[19]  Ashish Sharma,et al.  A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling , 2004 .

[20]  Henrik Madsen,et al.  An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation , 2004 .

[21]  M Mourad,et al.  Stormwater quality models: sensitivity to calibration data. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[22]  F. Clemens,et al.  Impact of dimension uncertainty and model calibration on sewer system assessment. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[23]  A. O'Hagan,et al.  Statistical Methods for Eliciting Probability Distributions , 2005 .

[24]  R. P. Silberstein,et al.  Hydrological models are so good, do we still need data? , 2006, Environ. Model. Softw..

[25]  Peter M. Harris,et al.  Evolution of the ‘Guide to the Expression of Uncertainty in Measurement’ , 2006 .

[26]  D. Kavetski,et al.  Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters , 2006 .

[27]  K. Beven On undermining the science? , 2006 .

[28]  Model Averaging, Equifinality and Uncertainty Estimation in the Modelling of Ungauged Catchments , 2006 .

[29]  Jean-Luc Bertrand-Krajewski,et al.  Stormwater pollutant loads modelling: epistemological aspects and case studies on the influence of field data sets on calibration and verification. , 2007, Water science and technology : a journal of the International Association on Water Pollution Research.

[30]  Alberto Montanari,et al.  What do we mean by ‘uncertainty’? The need for a consistent wording about uncertainty assessment in hydrology , 2007 .

[31]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[32]  John Doherty,et al.  Parameter interdependence and uncertainty induced by lumping in a hydrologic model , 2007 .

[33]  A. Deletic,et al.  Sensitivity testing of a coupled Escherichia coli - : Hydrologic catchment model , 2007 .

[34]  Jing Yang,et al.  Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China , 2008 .

[35]  W. Rauch,et al.  Impact of input data uncertainties on stormwater model parameters , 2008 .

[36]  S Thorndahl,et al.  Probabilistic modelling of combined sewer overflow using the First Order Reliability Method. , 2008, Water science and technology : a journal of the International Association on Water Pollution Research.

[37]  A Deletic,et al.  Uncertainties in stormwater E. coli levels. , 2008, Water research.

[38]  Cajo J. F. ter Braak,et al.  Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation , 2008 .

[39]  A Deletic,et al.  Impact of input data uncertainties on urban stormwater model parameters. , 2009, Water science and technology : a journal of the International Association on Water Pollution Research.

[40]  Cajo J. F. ter Braak,et al.  Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? , 2009 .

[41]  Gabriele Freni,et al.  Urban runoff modelling uncertainty: Comparison among Bayesian and pseudo-Bayesian methods , 2009, Environ. Model. Softw..

[42]  K. Beven,et al.  Comment on “Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?” by Jasper A. Vrugt, Cajo J. F. ter Braak, Hoshin V. Gupta and Bruce A. Robinson , 2009 .

[43]  S Fach,et al.  Optimization of measurement campaigns for calibration of a conceptual sewer model. , 2009, Water science and technology : a journal of the International Association on Water Pollution Research.

[44]  S. Haydon,et al.  Model output uncertainty of a coupled pathogen indicator-hydrologic catchment model due to input data uncertainty , 2009, Environ. Model. Softw..

[45]  T. D. Fletcher,et al.  Analysis of parameter uncertainty of a flow and quality stormwater model. , 2009, Water science and technology : a journal of the International Association on Water Pollution Research.

[46]  A. Dembelé MES, DCO et polluants prioritaires des rejets urbains de temps de pluie : mesure et modélisation des flux événementiels , 2010 .

[47]  John Doherty,et al.  A short exploration of structural noise , 2010 .

[48]  G. Freni,et al.  Uncertainty in water quality modelling: The applicability of Variance Decomposition Approach , 2010 .

[49]  R. Ashley,et al.  Towards quantification of uncertainty in predicting water quality failures in integrated catchment model studies. , 2010, Water research.

[50]  A Deletic,et al.  Sensitivity analysis of an urban stormwater microorganism model. , 2010, Water science and technology : a journal of the International Association on Water Pollution Research.

[51]  Gabriele Freni,et al.  The influence of rainfall time resolution for urban water quality modelling. , 2010, Water science and technology : a journal of the International Association on Water Pollution Research.

[52]  V. Singh,et al.  Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models , 2010 .

[53]  T D Fletcher,et al.  Stormwater quality models: performance and sensitivity analysis. , 2010, Water science and technology : a journal of the International Association on Water Pollution Research.